IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008844.html
   My bibliography  Save this article

Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present

Author

Listed:
  • Raman, Rohith Kumar
  • Gurusamy Thangavelu, Senthil A.
  • Venkataraj, Selvaraj
  • Krishnamoorthy, Ananthanarayanan

Abstract

In the past decade perovskite solar cells have received immense attention and an astounding advance in terms of power conversion efficiency is achieved. The best achieved power conversion efficiency for single junction device is around 25 % which is comparable to the well-established and commercialized silicon solar cell technology. The poor lifetime and stability of these devices remain a major bottleneck, which needs to be resolved quickly as these factors play a significant hurdle towards commercialization of this technology. Apart from developing new stable perovskite material and optimizing the device architecture, a robust barrier/encapsulation with high barrier performance materials is one of the best ways to address the poor lifetime/stability problems encountered in these devices. Polymer based encapsulation methodology can satisfy both the needs of maintaining a balance between processing cost and device lifetime. In this review article an extensive outline on the degradation mechanisms commonly seen in perovskite solar cells is first accounted. In depth analysis about the various requirements an encapsulant material must satisfy and different types of encapsulant materials that were used earlier as an encapsulant in perovskite solar cells are explained. Various techniques that are commonly adopted for the encapsulation procedure is discussed briefly. This review is concluded by mentioning few promising strategies in encapsulation which could help in improving the overall device stability and lifetime of perovskite solar cells.

Suggested Citation

  • Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008844
    DOI: 10.1016/j.rser.2021.111608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad, Jakaria & Bazaka, Kateryna & Anderson, Liam J. & White, Ronald D. & Jacob, Mohan V., 2013. "Materials and methods for encapsulation of OPV: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 104-117.
    2. Yan Jiang & Longbin Qiu & Emilio J. Juarez-Perez & Luis K. Ono & Zhanhao Hu & Zonghao Liu & Zhifang Wu & Lingqiang Meng & Qijing Wang & Yabing Qi, 2019. "Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation," Nature Energy, Nature, vol. 4(7), pages 585-593, July.
    3. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    4. Mark V. Khenkin & Eugene A. Katz & Antonio Abate & Giorgio Bardizza & Joseph J. Berry & Christoph Brabec & Francesca Brunetti & Vladimir Bulović & Quinn Burlingame & Aldo Di Carlo & Rongrong Cheacharo, 2020. "Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures," Nature Energy, Nature, vol. 5(1), pages 35-49, January.
    5. Jin-Wook Lee & Zhenghong Dai & Tae-Hee Han & Chungseok Choi & Sheng-Yung Chang & Sung-Joon Lee & Nicholas De Marco & Hongxiang Zhao & Pengyu Sun & Yu Huang & Yang Yang, 2018. "2D perovskite stabilized phase-pure formamidinium perovskite solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    7. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    8. Kevin A. Bush & Axel F. Palmstrom & Zhengshan J. Yu & Mathieu Boccard & Rongrong Cheacharoen & Jonathan P. Mailoa & David P. McMeekin & Robert L. Z. Hoye & Colin D. Bailie & Tomas Leijtens & Ian Mariu, 2017. "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    9. Nicholas Aristidou & Christopher Eames & Irene Sanchez-Molina & Xiangnan Bu & Jan Kosco & M. Saiful Islam & Saif A. Haque, 2017. "Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells," Nature Communications, Nature, vol. 8(1), pages 1-10, August.
    10. Jing Wang & Jie Zhang & Yingzhi Zhou & Hongbin Liu & Qifan Xue & Xiaosong Li & Chu-Chen Chueh & Hin-Lap Yip & Zonglong Zhu & Alex K. Y. Jen, 2020. "Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jianying & Xiang, Huimin & Ran, Ran & Zhou, Wei & Wang, Wei & Shao, Zongping, 2024. "Fundamental understanding in the performance-limiting factors of Cs2AgBiBr6-based perovskite photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
    2. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    3. Zhuang Zhang & Huanhuan Wang & T. Jesper Jacobsson & Jingshan Luo, 2022. "Big data driven perovskite solar cell stability analysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    7. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    8. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Xixiang Zhu & Liping Peng & Jinpeng Li & Haomiao Yu & Yulin Xie, 2021. "Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation," Energies, MDPI, vol. 14(21), pages 1-10, November.
    11. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    13. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Fangyuan Ye & Shuo Zhang & Jonathan Warby & Jiawei Wu & Emilio Gutierrez-Partida & Felix Lang & Sahil Shah & Elifnaz Saglamkaya & Bowen Sun & Fengshuo Zu & Safa Shoaee & Haifeng Wang & Burkhard Stille, 2022. "Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Bo Li & Qi Liu & Jianqiu Gong & Shuai Li & Chunlei Zhang & Danpeng Gao & Zhongwei Chen & Zhen Li & Xin Wu & Dan Zhao & Zexin Yu & Xintong Li & Yan Wang & Haipeng Lu & Xiao Cheng Zeng & Zonglong Zhu, 2024. "Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Xinchen Dai & Pramod Koshy & Charles Christopher Sorrell & Jongchul Lim & Jae Sung Yun, 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues," Energies, MDPI, vol. 13(23), pages 1-24, December.
    20. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.