IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v299y2021ics0306261921007145.html
   My bibliography  Save this article

A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency

Author

Listed:
  • Nieto-Díaz, Balder A.
  • Crossland, Andrew F.
  • Groves, Christopher

Abstract

A model of levelized cost of energy (LCOE) is presented which accounts for the significant ‘burn-in’ losses common in photovoltaic (PV) devices with organic (OPV) and perovskite (PVK) absorber layers. This model is used to quantify the relative importance of burn-in, module cost and initial efficiency for a realistic grid-scale PV installation situated in Fiji. The effectiveness of improvements in PV technology in reducing LCOE is shown to depend critically upon the current status of the technology. Predictions of LCOE for specific state-of-the-art OPV and PVK devices sourced from the literature are presented, some of which are shown to have potential to compete at the grid scale. However, devices with state-of-the-art initial efficiencies are not necessarily those with state-of-the-art LCOE, emphasizing the need to characterize lifetime energy yield and for an LCOE approach to select the most promising candidate technologies.

Suggested Citation

  • Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007145
    DOI: 10.1016/j.apenergy.2021.117302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    2. Jaemin Kong & Suhee Song & Minji Yoo & Ga Young Lee & Obum Kwon & Jin Kuen Park & Hyungcheol Back & Geunjin Kim & Seoung Ho Lee & Hongsuk Suh & Kwanghee Lee, 2014. "Long-term stable polymer solar cells with significantly reduced burn-in loss," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    3. G. Grancini & C. Roldán-Carmona & I. Zimmermann & E. Mosconi & X. Lee & D. Martineau & S. Narbey & F. Oswald & F. De Angelis & M. Graetzel & Mohammad Khaja Nazeeruddin, 2017. "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    4. Derya Baran & Nicola Gasparini & Andrew Wadsworth & Ching Hong Tan & Nimer Wehbe & Xin Song & Zeinab Hamid & Weimin Zhang & Marios Neophytou & Thomas Kirchartz & Christoph J. Brabec & James R. Durrant, 2018. "Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Quinn Burlingame & Xiaheng Huang & Xiao Liu & Changyeong Jeong & Caleb Coburn & Stephen R. Forrest, 2019. "Intrinsically stable organic solar cells under high-intensity illumination," Nature, Nature, vol. 573(7774), pages 394-397, September.
    6. Jing Wang & Jie Zhang & Yingzhi Zhou & Hongbin Liu & Qifan Xue & Xiaosong Li & Chu-Chen Chueh & Hin-Lap Yip & Zonglong Zhu & Alex K. Y. Jen, 2020. "Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    8. Zhiping Wang & Qianqian Lin & Francis P. Chmiel & Nobuya Sakai & Laura M. Herz & Henry J. Snaith, 2017. "Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites," Nature Energy, Nature, vol. 2(9), pages 1-10, September.
    9. Jin-Wook Lee & Zhenghong Dai & Tae-Hee Han & Chungseok Choi & Sheng-Yung Chang & Sung-Joon Lee & Nicholas De Marco & Hongxiang Zhao & Pengyu Sun & Yu Huang & Yang Yang, 2018. "2D perovskite stabilized phase-pure formamidinium perovskite solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong, Shijia & Wu, Jing & Chang, I-Shin, 2024. "Cost accounting and economic competitiveness evaluation of photovoltaic power generation in China —— based on the system levelized cost of electricity," Renewable Energy, Elsevier, vol. 222(C).
    2. Vera A. Barinova & Kseniya V. Demidova, 2023. "Economic Feasibility of Solar Energy in Russia [Экономическая Целесообразность Развития Солнечной Энергетики В России]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 10, pages 18-31, October.
    3. Zakariya M. Dalala & Saba Z. AlAqbani & Dima R. Khirfan & Layth H. Alhamad & Mohammad Al-Addous & Nesrine Barbana, 2022. "Analysis and Design Methodology of a Novel Integration Topology of Storageless Off-Grid PV Systems," Energies, MDPI, vol. 15(4), pages 1-18, February.
    4. Benalcazar, Pablo & Komorowska, Aleksandra & Kamiński, Jacek, 2024. "A GIS-based method for assessing the economics of utility-scale photovoltaic systems," Applied Energy, Elsevier, vol. 353(PA).
    5. Yun, Min Ju & Sim, Yeon Hyang & Lee, Dong Yoon & Cha, Seung I., 2022. "Reliable Lego®-style assembled stretchable photovoltaic module for 3-dimensional curved surface application," Applied Energy, Elsevier, vol. 323(C).
    6. Vera A. Barinova & Kseniya V. Demidova, 2023. "Экономическая Целесообразность Развития Солнечной Энергетики В России," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 10, pages 18-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    2. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    4. Fangyuan Ye & Shuo Zhang & Jonathan Warby & Jiawei Wu & Emilio Gutierrez-Partida & Felix Lang & Sahil Shah & Elifnaz Saglamkaya & Bowen Sun & Fengshuo Zu & Safa Shoaee & Haifeng Wang & Burkhard Stille, 2022. "Overcoming C60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    7. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Shaochuan Hou & Siheng Wu & Xiaoyan Li & Jiahao Yan & Jie Xing & Hao Liu & Huiying Hao & Jingjing Dong & Haochong Huang, 2022. "Efficient CsPbBr 3 Perovskite Solar Cells with Storage Stability > 340 Days," Energies, MDPI, vol. 15(20), pages 1-9, October.
    9. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    10. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    11. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    13. Campiglio, Emanuele & Lamperti, Francesco & Terranova, Roberta, 2024. "Believe me when I say green! Heterogeneous expectations and climate policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    14. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    15. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    16. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    17. Yasir Alsaedi & Gurudeo Anand Tularam & Victor Wong, 2021. "Impact of the Nature of Energy Management and Responses to Policies Regarding Solar and Wind Pricing: A Qualitative Study of the Australian Electricity Markets," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 191-205.
    18. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.
    19. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    20. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.