IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33637-7.html
   My bibliography  Save this article

Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH

Author

Listed:
  • McKenna K. Goetz

    (University of Wisconsin-Madison)

  • Michael T. Bender

    (University of Wisconsin-Madison)

  • Kyoung-Shin Choi

    (University of Wisconsin-Madison)

Abstract

Many biomass intermediates are polyols and selectively oxidizing only a primary or secondary alcohol group is beneficial for the valorization of these intermediates. For example, production of 1,3-dihydroxyacetone, a highly valuable oxidation product of glycerol, requires selective secondary alcohol oxidation. However, selective secondary alcohol oxidation is challenging due to its steric disadvantage. This study demonstrates that NiOOH, which oxidizes alcohols via two dehydrogenation mechanisms, hydrogen atom transfer and hydride transfer, can convert glycerol to 1,3-dihydroxyacetone with high selectivity when the conditions are controlled to promote hydrogen atom transfer, favoring secondary alcohol oxidation. This rational production of 1,3-dihydroxyacetone achieved by selectively enabling one desired dehydrogenation pathway, without requiring alteration of catalyst composition, demonstrates how comprehensive mechanistic understanding can enable predictive control over selectivity.

Suggested Citation

  • McKenna K. Goetz & Michael T. Bender & Kyoung-Shin Choi, 2022. "Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33637-7
    DOI: 10.1038/s41467-022-33637-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33637-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33637-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Li & Xinfa Wei & Lisong Chen & Jianlin Shi & Mingyuan He, 2019. "Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Michael T. Bender & Xin Yuan & Kyoung-Shin Choi, 2020. "Alcohol oxidation as alternative anode reactions paired with (photo)electrochemical fuel production reactions," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    3. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Pan Ran & Aoqian Qiu & Tianshu Liu & Fangyuan Wang & Bailin Tian & Beiyao Xiang & Jun Li & Yang Lv & Mengning Ding, 2024. "Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yuan Lu & Byoung Guan Lee & Cheng Lin & Tae-Kyung Liu & Zhipeng Wang & Jiaming Miao & Sang Ho Oh & Ki Chul Kim & Kan Zhang & Jong Hyeok Park, 2024. "Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    3. Lei, Yuanting & Zhang, Lili & Zhou, Danni & Xiong, Chengli & Zhao, Yafei & Chen, Wenxing & Xiang, Xu & Shang, Huishan & Zhang, Bing, 2022. "Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting," Renewable Energy, Elsevier, vol. 194(C), pages 459-468.
    4. Kivevele, Thomas & Kichonge, Baraka, 2024. "Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation," Energy, Elsevier, vol. 297(C).
    5. Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
    6. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    7. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    8. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Sangar, Shatesh Kumar & Syazwani, Osman Nur & Farabi, M.S. Ahmad & Razali, S.M. & Shobhana, Gnanasekhar & Teo, Siow Hwa & Taufiq-Yap, Yun Hin, 2019. "Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol," Renewable Energy, Elsevier, vol. 142(C), pages 658-667.
    10. Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Kong, Pei San & Aroua, Mohamed Kheireddine & Daud, Wan Mohd Ashri Wan, 2016. "Conversion of crude and pure glycerol into derivatives: A feasibility evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 533-555.
    12. Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2021. "Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend," Energies, MDPI, vol. 14(20), pages 1-15, October.
    13. Kai Shi & Di Si & Xue Teng & Lisong Chen & Jianlin Shi, 2024. "Pd/NiMoO4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    15. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Mariem Harabi & Soumaya Neji Bouguerra & Fatma Marrakchi & Loukia P. Chrysikou & Stella Bezergianni & Mohamed Bouaziz, 2019. "Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    17. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Seretis, A. & Tsiakaras, P., 2016. "Aqueous phase reforming (APR) of glycerol over platinum supported on Al2O3 catalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1116-1126.
    19. Zuyun He & Jinwoo Hwang & Zhiheng Gong & Mengzhen Zhou & Nian Zhang & Xiongwu Kang & Jeong Woo Han & Yan Chen, 2022. "Promoting biomass electrooxidation via modulating proton and oxygen anion deintercalation in hydroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33637-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.