IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52789-2.html
   My bibliography  Save this article

Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals

Author

Listed:
  • Gui Zhao

    (Shanghai Jiao Tong University)

  • Jiayi Lin

    (Shanghai Jiao Tong University)

  • Mengying Lu

    (Shanghai Jiao Tong University)

  • Lina Li

    (Shanghai Advanced Research Institute)

  • Pengtao Xu

    (Shanghai Jiao Tong University)

  • Xi Liu

    (Shanghai Jiao Tong University)

  • Liwei Chen

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

Abstract

The electrocatalytic valorization of polyethylene terephthalate-derived ethylene glycol to valuable glycolic acid offers considerable economic and environmental benefits. However, conventional methods face scalability issues due to rapid activity decay of noble metal electrocatalysts. We demonstrate that a dynamic potential cycling approach, which alternates the electrode potential between oxidizing and reducing values, significantly mitigates surface deactivation of noble metals during electrochemical oxidation of ethylene glycol. This method enhances catalyst activity by 20 times compared to a constant-potential approach, maintaining this performance for up to 60 h with minimal deactivation. In situ Raman and X-ray absorption spectroscopy show that this effectiveness results from efficient removal of surface oxide during the reaction. The strategy is applicable to polyethylene terephthalate hydrolysates and various noble metals, such as palladium, gold, and platinum, with palladium showing a high conversion rate in recent studies. Our approach offers an efficient and durable method for electrochemical upcycling of biomass-derived compounds.

Suggested Citation

  • Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52789-2
    DOI: 10.1038/s41467-024-52789-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52789-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52789-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosa M. Arán-Ais & Fabian Scholten & Sebastian Kunze & Rubén Rizo & Beatriz Roldan Cuenya, 2020. "The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction," Nature Energy, Nature, vol. 5(4), pages 317-325, April.
    2. Zhuozhi Chen & Rongdi Duan & Yunjie Xiao & Yi Wei & Hanxiao Zhang & Xinzhao Sun & Shen Wang & Yingying Cheng & Xue Wang & Shanwei Tong & Yunxiao Yao & Cheng Zhu & Haitao Yang & Yanyan Wang & Zefang Wa, 2022. "Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Ruochen Cao & Mei-Qi Zhang & Yuchen Jiao & Yuchen Li & Bo Sun & Dequan Xiao & Meng Wang & Ding Ma, 2023. "Co-upcycling of polyvinyl chloride and polyesters," Nature Sustainability, Nature, vol. 6(12), pages 1685-1692, December.
    4. McKenna K. Goetz & Michael T. Bender & Kyoung-Shin Choi, 2022. "Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Lin Ye & Xinping Duan & Simson Wu & Tai-Sing Wu & Yuxin Zhao & Alex W. Robertson & Hung-Lung Chou & Jianwei Zheng & Tuğçe Ayvalı & Sarah Day & Chiu Tang & Yun-Liang Soo & Youzhu Yuan & Shik Chi Edman , 2019. "Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    6. V. Tournier & C. M. Topham & A. Gilles & B. David & C. Folgoas & E. Moya-Leclair & E. Kamionka & M.-L. Desrousseaux & H. Texier & S. Gavalda & M. Cot & E. Guémard & M. Dalibey & J. Nomme & G. Cioci & , 2020. "An engineered PET depolymerase to break down and recycle plastic bottles," Nature, Nature, vol. 580(7802), pages 216-219, April.
    7. Hua Zhou & Yue Ren & Zhenhua Li & Ming Xu & Ye Wang & Ruixiang Ge & Xianggui Kong & Lirong Zheng & Haohong Duan, 2021. "Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Zhiqi Zhang & Jiapeng Liu & Jian Wang & Qi Wang & Yuhao Wang & Kai Wang & Zheng Wang & Meng Gu & Zhenghua Tang & Jongwoo Lim & Tianshou Zhao & Francesco Ciucci, 2021. "Single-atom catalyst for high-performance methanol oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Zhenhua Li & Yifan Yan & Si-Min Xu & Hua Zhou & Ming Xu & Lina Ma & Mingfei Shao & Xianggui Kong & Bin Wang & Lirong Zheng & Haohong Duan, 2022. "Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zhang, Xuewei & Zhou, Wei & Huang, Yuming & Ding, Yani & Li, Junfeng & Xie, Liang & Yu, Yang & Chen, Jiaxiang & Sun, Miaoting & Meng, Xiaoxiao, 2024. "Enhanced hydrogen production enabled by pulsed potential coupled sulfite electrooxidation water electrolysis system," Renewable Energy, Elsevier, vol. 227(C).
    4. Yining Sun & Kui Fan & Jinze Li & Lei Wang & Yusen Yang & Zhenhua Li & Mingfei Shao & Xue Duan, 2024. "Boosting electrochemical oxygen reduction to hydrogen peroxide coupled with organic oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Marvin L. Frisch & Longfei Wu & Clément Atlan & Zhe Ren & Madeleine Han & Rémi Tucoulou & Liang Liang & Jiasheng Lu & An Guo & Hong Nhan Nong & Aleks Arinchtein & Michael Sprung & Julie Villanova & Ma, 2023. "Unraveling the synergistic effects of Cu-Ag tandem catalysts during electrochemical CO2 reduction using nanofocused X-ray probes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Guodong Fu & Xiaomin Kang & Yan Zhang & Ying Guo & Zhiwei Li & Jianwen Liu & Lei Wang & Jiujun Zhang & Xian-Zhu Fu & Jing-Li Luo, 2023. "Capturing critical gem-diol intermediates and hydride transfer for anodic hydrogen production from 5-hydroxymethylfurfural," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Meng He & Yongmeng Wu & Rui Li & Yuting Wang & Cuibo Liu & Bin Zhang, 2023. "Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Chao Zhan & Federico Dattila & Clara Rettenmaier & Antonia Herzog & Matias Herran & Timon Wagner & Fabian Scholten & Arno Bergmann & Núria López & Beatriz Roldan Cuenya, 2024. "Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol," Nature Energy, Nature, vol. 9(12), pages 1485-1496, December.
    10. Kai Shi & Di Si & Xue Teng & Lisong Chen & Jianlin Shi, 2024. "Pd/NiMoO4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Elizabeth L. Bell & Gloria Rosetto & Morgan A. Ingraham & Kelsey J. Ramirez & Clarissa Lincoln & Ryan W. Clarke & Japheth E. Gado & Jacob L. Lilly & Katarzyna H. Kucharzyk & Erika Erickson & Gregg T. , 2024. "Natural diversity screening, assay development, and characterization of nylon-6 enzymatic depolymerization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Xiang Liu & Yu-Quan Zhu & Jing Li & Ye Wang & Qiujin Shi & An-Zhen Li & Kaiyue Ji & Xi Wang & Xikang Zhao & Jinyu Zheng & Haohong Duan, 2024. "Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Xun Zhang & Ximin Feng & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2024. "Chemically recyclable polyvinyl chloride-like plastics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Trishnamoni Gautom & Dharmendra Dheeman & Colin Levy & Thomas Butterfield & Guadalupe Alvarez Gonzalez & Philip Roy & Lewis Caiger & Karl Fisher & Linus Johannissen & Neil Dixon, 2021. "Structural basis of terephthalate recognition by solute binding protein TphC," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Yanmei Huang & Caihong He & Chuanqi Cheng & Shuhe Han & Meng He & Yuting Wang & Nannan Meng & Bin Zhang & Qipeng Lu & Yifu Yu, 2023. "Pulsed electroreduction of low-concentration nitrate to ammonia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Kamali, Ali Reza & Li, Siyuan, 2023. "Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance," Applied Energy, Elsevier, vol. 334(C).
    19. Qing Ma & Yongjun Gao & Bo Sun & Jianlong Du & Hong Zhang & Ding Ma, 2024. "Grave-to-cradle dry reforming of plastics via Joule heating," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Jeongjin Kim & Youngseok Yu & Tae Won Go & Jean-Jacques Gallet & Fabrice Bournel & Bongjin Simon Mun & Jeong Young Park, 2023. "Revealing CO2 dissociation pathways at vicinal copper (997) interfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52789-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.