Oxidative steam reforming of glycerol. A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111299
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hajjaji, Noureddine & Baccar, Ines & Pons, Marie-Noëlle, 2014. "Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming," Renewable Energy, Elsevier, vol. 71(C), pages 368-380.
- Michal Gruca & Michal Pyrc & Magdalena Szwaja & Stanislaw Szwaja, 2020. "Effective Combustion of Glycerol in a Compression Ignition Engine Equipped with Double Direct Fuel Injection," Energies, MDPI, vol. 13(23), pages 1-14, December.
- Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Schwengber, Carine Aline & Alves, Helton José & Schaffner, Rodolfo Andrade & da Silva, Fernando Alves & Sequinel, Rodrigo & Bach, Vanessa Rossato & Ferracin, Ricardo José, 2016. "Overview of glycerol reforming for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 259-266.
- Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
- Min Wang & Meijiang Liu & Jianmin Lu & Feng Wang, 2020. "Photo splitting of bio-polyols and sugars to methanol and syngas," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Abdul Ghani, Ahmad & Torabi, Farshid & Ibrahim, Hussameldin, 2018. "Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses," Energy, Elsevier, vol. 144(C), pages 129-145.
- Yang, Guangxing & Yu, Hao & Peng, Feng & Wang, Hongjuan & Yang, Jian & Xie, Donglai, 2011. "Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol," Renewable Energy, Elsevier, vol. 36(8), pages 2120-2127.
- Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
- He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
- Tamošiūnas, Andrius & Gimžauskaitė, Dovilė & Uscila, Rolandas & Aikas, Mindaugas, 2019. "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2021. "Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend," Energies, MDPI, vol. 14(20), pages 1-15, October.
- Is Fatimah & Imam Sahroni & Ganjar Fadillah & Muhammad Miqdam Musawwa & Teuku Meurah Indra Mahlia & Oki Muraza, 2019. "Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts," Energies, MDPI, vol. 12(15), pages 1-14, July.
- Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Okoye, P.U. & Abdullah, A.Z. & Hameed, B.H., 2017. "A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 387-401.
- Schwengber, Carine Aline & Alves, Helton José & Schaffner, Rodolfo Andrade & da Silva, Fernando Alves & Sequinel, Rodrigo & Bach, Vanessa Rossato & Ferracin, Ricardo José, 2016. "Overview of glycerol reforming for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 259-266.
- Zihao Zhang & Qiang Li & Xiangkun Wu & Claire Bourmaud & Dionisios G. Vlachos & Jeremy Luterbacher & Andras Bodi & Patrick Hemberger, 2024. "A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
- Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
- Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
- Kivevele, Thomas & Kichonge, Baraka, 2024. "Techno-economic evaluation of transesterification processes for biodiesel production from low quality non-edible feedstocks: Process design and simulation," Energy, Elsevier, vol. 297(C).
- Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
- Aghbashlo, Mortaza & Tabatabaei, Meisam & Rastegari, Hajar & Ghaziaskar, Hassan S. & Valijanian, Elena, 2018. "Exergy-based optimization of a continuous reactor applied to produce value-added chemicals from glycerol through esterification with acetic acid," Energy, Elsevier, vol. 150(C), pages 351-362.
- Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Kim, Seonggon & Ko, Yunmo & Lee, Geun Jeong & Lee, Jae Won & Xu, Ronghuan & Ahn, Hyungseop & Kang, Yong Tae, 2023. "Sustainable energy harvesting from post-combustion CO2 capture using amine-functionalized solvents," Energy, Elsevier, vol. 267(C).
- Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
- Sangar, Shatesh Kumar & Syazwani, Osman Nur & Farabi, M.S. Ahmad & Razali, S.M. & Shobhana, Gnanasekhar & Teo, Siow Hwa & Taufiq-Yap, Yun Hin, 2019. "Effective biodiesel synthesis from palm fatty acid distillate (PFAD) using carbon-based solid acid catalyst derived glycerol," Renewable Energy, Elsevier, vol. 142(C), pages 658-667.
More about this item
Keywords
Glycerin; Autothermal reforming; Syngas; Oxidative steam reforming; Structured catalytic reactors;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.