IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p1937-d219056.html
   My bibliography  Save this article

Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends

Author

Listed:
  • Mariem Harabi

    (Laboratory of Electrochemistry and Environment, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia)

  • Soumaya Neji Bouguerra

    (Laboratory of Electrochemistry and Environment, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia)

  • Fatma Marrakchi

    (Laboratory of Electrochemistry and Environment, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia)

  • Loukia P. Chrysikou

    (Chemical Process & Energy Resources Institute-CPERI, Centre for Research & Technology Hellas–CERTH, 57001 Thermi, Thessaloniki, Greece)

  • Stella Bezergianni

    (Chemical Process & Energy Resources Institute-CPERI, Centre for Research & Technology Hellas–CERTH, 57001 Thermi, Thessaloniki, Greece)

  • Mohamed Bouaziz

    (Laboratory of Electrochemistry and Environment, National Engineering School of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia)

Abstract

Waste oils are becoming increasingly more important as feedstock for the production of fuels and glycerol as byproduct. Optimization of homogeneous transesterification of waste frying oil (WFO) to biodiesel over hydroxide potassium (KOH) catalyst have been investigated. In this respect, response surface methodology (RSM) was applied to determine the relationships between methanol and WFO molar ratio (3:1–12:1), KOH concentration (0.5%–2%) and temperature (25–65 °C) on the conversion yield. Transesterification of WFO produced 96.33% maximum methyl ester yield at the optimum methanol/WFO molar ratio 7.3:1, KOH loading 0.5 wt. % and the reaction temperature was 58.30 °C. The physicochemical properties of optimized biodiesel met the requirements of the European Norm 14214, such as kinematic viscosity at 40 °C 4.57 mm/s 2 , the sulfur content 0.005 wt. %, and the density at 15 °C 889.3 kg/m 3 . This study also examined the accelerated oxidation of biodiesel and biodiesel/diesel blends under combined temperature and air effect at different periods of time while measuring their acidity. Results have shown that total acid number increased proportionally to the biodiesel content of the biodiesel/diesel blends from 0.5 mgKOH/g for B7 (7% (v/v) biodiesel and 93% (v/v) diesel) up to 2.8 mg KOH/g for B100 (100% biodiesel). The synthesized trans-esterified oil can be a potential alternative to petrodiesel, hence its application at an industrial scale. This work also reports some properties of crude glycerol (CG) derived from biodiesel from WFO. The glycerol yield (%), pH, water content (wt. %), density at 15 °C (g/cm 3 ), and kinematic viscosity at 40 °C (mm 2 /s) was analyzed according to standard test methods.

Suggested Citation

  • Mariem Harabi & Soumaya Neji Bouguerra & Fatma Marrakchi & Loukia P. Chrysikou & Stella Bezergianni & Mohamed Bouaziz, 2019. "Biodiesel and Crude Glycerol from Waste Frying Oil: Production, Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1937-:d:219056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/1937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/1937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Monteiro, Marcos Roberto & Kugelmeier, Cristie Luis & Pinheiro, Rafael Sanaiotte & Batalha, Mario Otávio & da Silva César, Aldara, 2018. "Glycerol from biodiesel production: Technological paths for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 109-122.
    3. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    4. Leoneti, Alexandre Bevilacqua & Aragão-Leoneti, Valquiria & de Oliveira, Sonia Valle Walter Borges, 2012. "Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use of unrefined glycerol," Renewable Energy, Elsevier, vol. 45(C), pages 138-145.
    5. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    6. Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
    7. Gupta, Mayank & Kumar, Naveen, 2012. "Scope and opportunities of using glycerol as an energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4551-4556.
    8. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    9. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    2. Hunor Bartos & Márta Balázs & Ildikó Hajnalka Kuzman & Szabolcs Lányi & Ildikó Miklóssy, 2021. "Production of High Added-Value Chemicals in Basfia succiniciproducens : Role of Medium Composition," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    3. Mehmood Ali & Muhammad Shahid & Waseem Saeed & Shahab Imran & Md. Abul Kalam, 2023. "Design, Fabrication, and Operation of a 10 L Biodiesel Production Unit Powered by Conventional and Solar Energy Systems," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    4. Jan Sprafke & Vicky Shettigondahalli Ekanthalu & Michael Nelles, 2020. "Continuous Anaerobic Co-Digestion of Biowaste with Crude Glycerol under Mesophilic Conditions," Sustainability, MDPI, vol. 12(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    2. He, Quan (Sophia) & McNutt, Josiah & Yang, Jie, 2017. "Utilization of the residual glycerol from biodiesel production for renewable energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 63-76.
    3. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    4. Bharathiraja, B. & Chakravarthy, M. & Kumar, R. Ranjith & Yuvaraj, D. & Jayamuthunagai, J. & Kumar, R. Praveen & Palani, S., 2014. "Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 368-382.
    5. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    6. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    7. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    8. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    9. Ko, Chun-Han & Yeh, Kai-Wun & Wang, Ya-Nang & Wu, Chien-Hou & Chang, Fang-Chih & Cheng, Ming-Hsun & Liou, Chia-Shin, 2012. "Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing," Energy, Elsevier, vol. 48(1), pages 375-379.
    10. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    11. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Hezaveh, Hadi, 2014. "Glycerol for renewable acrolein production by catalytic dehydration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 28-59.
    12. da Silva César, Aldara & Conejero, Marco Antonio & Barros Ribeiro, Eliene Cristina & Batalha, Mário Otávio, 2019. "Competitiveness analysis of “social soybeans” in biodiesel production in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 1147-1157.
    13. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    14. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    16. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    17. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst," Applied Energy, Elsevier, vol. 105(C), pages 380-388.
    18. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    19. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    20. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1937-:d:219056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.