IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50353-6.html
   My bibliography  Save this article

Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region

Author

Listed:
  • Yuyan Zhu

    (Fudan University)

  • Yang Wang

    (Fudan University
    Chinese Academy of Sciences
    Shaoxin Laboratory
    Fudan University)

  • Xingchen Pang

    (Fudan University)

  • Yongbo Jiang

    (Fudan University)

  • Xiaoxian Liu

    (Fudan University)

  • Qing Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhen Wang

    (Chinese Academy of Sciences)

  • Chunsen Liu

    (Fudan University
    Fudan University)

  • Weida Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Peng Zhou

    (Fudan University
    Shaoxin Laboratory
    Fudan University
    Fudan University)

Abstract

Cutting-edge mid-wavelength infrared (MWIR) sensing technologies leverage infrared photodetectors, memory units, and computing units to enhance machine vision. Real-time processing and decision-making challenges emerge with the increasing number of intelligent pixels. However, current operations are limited to in-sensor computing capabilities for near-infrared technology, and high-performance MWIR detectors for multi-state switching functions are lacking. Here, we demonstrate a non-volatile MoS2/black phosphorus (BP) heterojunction MWIR photovoltaic detector featuring a semi-floating gate structure design, integrating near- to mid-infrared photodetection, memory and computing (PMC) functionalities. The PMC device exhibits the property of being able to store a stable responsivity, which varies linearly with the stored conductance state. Significantly, device weights (stable responsivity) can be programmed with power consumption as low as 1.8 fJ, and the blackbody peak responsivity can reach 1.68 A/W for the MWIR band. In the simulation of Faster Region with convolution neural network (CNN) based on the FLIR dataset, the PMC hardware responsivity weights can reach 89% mean Average Precision index of the feature extraction network software weights. This MWIR photovoltaic detector, with its versatile functionalities, holds significant promise for applications in advanced infrared object detection and recognition systems.

Suggested Citation

  • Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50353-6
    DOI: 10.1038/s41467-024-50353-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50353-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50353-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seokhyeong Lee & Ruoming Peng & Changming Wu & Mo Li, 2022. "Programmable black phosphorus image sensor for broadband optoelectronic edge computing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. S. Ambrogio & P. Narayanan & A. Okazaki & A. Fasoli & C. Mackin & K. Hosokawa & A. Nomura & T. Yasuda & A. Chen & A. Friz & M. Ishii & J. Luquin & Y. Kohda & N. Saulnier & K. Brew & S. Choi & I. Ok & , 2023. "An analog-AI chip for energy-efficient speech recognition and transcription," Nature, Nature, vol. 620(7975), pages 768-775, August.
    3. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Feng Wu & Qing Li & Peng Wang & Hui Xia & Zhen Wang & Yang Wang & Man Luo & Long Chen & Fansheng Chen & Jinshui Miao & Xiaoshuang Chen & Wei Lu & Chongxin Shan & Anlian Pan & Xing Wu & Wencai Ren & De, 2019. "High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yin Wang & Hongwei Tang & Yufeng Xie & Xinyu Chen & Shunli Ma & Zhengzong Sun & Qingqing Sun & Lin Chen & Hao Zhu & Jing Wan & Zihan Xu & David Wei Zhang & Peng Zhou & Wenzhong Bao, 2021. "An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Deng & Ziqing Li & Shiyuan Liu & Xiaosheng Fang & Limin Wu, 2024. "Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhuiri Peng & Lei Tong & Wenhao Shi & Langlang Xu & Xinyu Huang & Zheng Li & Xiangxiang Yu & Xiaohan Meng & Xiao He & Shengjie Lv & Gaochen Yang & Hao Hao & Tian Jiang & Xiangshui Miao & Lei Ye, 2024. "Multifunctional human visual pathway-replicated hardware based on 2D materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Hao Jiang & Yinzhu Chen & Wenyu Guo & Yan Zhang & Rigui Zhou & Mile Gu & Fan Zhong & Zhenhua Ni & Junpeng Lu & Cheng-Wei Qiu & Weibo Gao, 2024. "Metasurface-enabled broadband multidimensional photodetectors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Dohyun Kwak & Dmitry K. Polyushkin & Thomas Mueller, 2023. "In-sensor computing using a MoS2 photodetector with programmable spectral responsivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Thanh Luan Phan & Sohyeon Seo & Yunhee Cho & Quoc An Vu & Young Hee Lee & Dinh Loc Duong & Hyoyoung Lee & Woo Jong Yu, 2022. "CNT-molecule-CNT (1D-0D-1D) van der Waals integration ferroelectric memory with 1-nm2 junction area," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Yongxiang Li & Shiqing Wang & Ke Yang & Yuchao Yang & Zhong Sun, 2024. "An emergent attractor network in a passive resistive switching circuit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Xingchen Pang & Yang Wang & Yuyan Zhu & Zhenhan Zhang & Du Xiang & Xun Ge & Haoqi Wu & Yongbo Jiang & Zizheng Liu & Xiaoxian Liu & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Malte J. Rasch & Fabio Carta & Omobayode Fagbohungbe & Tayfun Gokmen, 2024. "Fast and robust analog in-memory deep neural network training," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Haihui Lan & Luyang Wang & Runze He & Shuyi Huang & Jinqiu Yu & Jinming Guo & Jingrui Luo & Yiling Li & Jinyang Zhang & Jiaxin Lin & Shunping Zhang & Mengqi Zeng & Lei Fu, 2023. "2D quasi-layered material with domino structure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Xiaopeng Feng & Chenglong Li & Jinmei Song & Yuhong He & Wei Qu & Weijun Li & Keke Guo & Lulu Liu & Bai Yang & Haotong Wei, 2024. "Differential perovskite hemispherical photodetector for intelligent imaging and location tracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50353-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.