Author
Listed:
- Zhao Guan
(East China Normal University)
- Lu-qi Wei
(East China Normal University)
- Wen-cheng Fan
(East China Normal University)
- Yi-chen Sun
(East China Normal University)
- Wei Cao
(Nanjing Tech University)
- Ming Tian
(Southeast University)
- Neng Wan
(Southeast University)
- Wen-yi Tong
(East China Normal University
Suzhou Laboratory)
- Bin-bin Chen
(East China Normal University)
- Ping-hua Xiang
(East China Normal University
Shanxi University)
- Chun-gang Duan
(East China Normal University
Shanxi University)
- Ni Zhong
(East China Normal University
Shanxi University)
Abstract
Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention. Manipulation of controllable polarization evolutions is also a big challenge due to an interlinked network of polarized domains. In this study, we employ a sliding-disturb measurement to examine and modulate these irregular moirés via mechanical force. By introducing a curved substrate, the irregular moirés are fabricated, and three distinct types of moiré domains with different patterns are identified and modulated by external mechanical force disturbing. They exhibit reduced pinning forces when the shear direction is not aligned with the strain direction. The shift of the moirés is observed to be orthogonal to the shear direction. This work offers an effective pathway for the controlled switch of the polarization in interfacial ferroelectricity.
Suggested Citation
Zhao Guan & Lu-qi Wei & Wen-cheng Fan & Yi-chen Sun & Wei Cao & Ming Tian & Neng Wan & Wen-yi Tong & Bin-bin Chen & Ping-hua Xiang & Chun-gang Duan & Ni Zhong, 2025.
"Mechanical force-induced interlayer sliding in interfacial ferroelectrics,"
Nature Communications, Nature, vol. 16(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56073-9
DOI: 10.1038/s41467-025-56073-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56073-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.