IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v563y2018i7732d10.1038_s41586-018-0704-z.html
   My bibliography  Save this article

Structural superlubricity and ultralow friction across the length scales

Author

Listed:
  • Oded Hod

    (Tel Aviv University)

  • Ernst Meyer

    (University of Basel)

  • Quanshui Zheng

    (Tsinghua University)

  • Michael Urbakh

    (Tel Aviv University)

Abstract

Structural superlubricity, a state of ultralow friction and wear between crystalline surfaces, is a fundamental phenomenon in modern tribology that defines a new approach to lubrication. Early measurements involved nanometre-scale contacts between layered materials, but recent experimental advances have extended its applicability to the micrometre scale. This is an important step towards practical utilization of structural superlubricity in future technological applications, such as durable nano- and micro-electromechanical devices, hard drives, mobile frictionless connectors, and mechanical bearings operating under extreme conditions. Here we provide an overview of the field, including its birth and main achievements, the current state of the art and the challenges to fulfilling its potential.

Suggested Citation

  • Oded Hod & Ernst Meyer & Quanshui Zheng & Michael Urbakh, 2018. "Structural superlubricity and ultralow friction across the length scales," Nature, Nature, vol. 563(7732), pages 485-492, November.
  • Handle: RePEc:nat:nature:v:563:y:2018:i:7732:d:10.1038_s41586-018-0704-z
    DOI: 10.1038/s41586-018-0704-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0704-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0704-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengyu Xu & Jiajun Lu & Di Lu & Yiran Li & Hai Lei & Bin Chen & Wenfei Li & Bin Xue & Yi Cao & Wei Wang, 2024. "Rapidly damping hydrogels engineered through molecular friction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Taotao Sun & Enlai Gao & Xiangzheng Jia & Jinbo Bian & Zhou Wang & Ming Ma & Quanshui Zheng & Zhiping Xu, 2024. "Robust structural superlubricity under gigapascal pressures," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xuanyu Huang & Tengfei Li & Jin Wang & Kai Xia & Zipei Tan & Deli Peng & Xiaojian Xiang & Bin Liu & Ming Ma & Quanshui Zheng, 2023. "Robust microscale structural superlubricity between graphite and nanostructured surface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Gus Greenwood & Jin Myung Kim & Shahriar Muhammad Nahid & Yeageun Lee & Amin Hajarian & SungWoo Nam & Rosa M. Espinosa-Marzal, 2023. "Dynamically tuning friction at the graphene interface using the field effect," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Dhanola, Anil & Khanna, Navneet & Gajrani, Kishor Kumar, 2022. "A critical review on liquid superlubricitive technology for attaining ultra-low friction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:563:y:2018:i:7732:d:10.1038_s41586-018-0704-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.