IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v579y2020i7797d10.1038_s41586-020-2038-x.html
   My bibliography  Save this article

Ultrafast machine vision with 2D material neural network image sensors

Author

Listed:
  • Lukas Mennel

    (Vienna University of Technology)

  • Joanna Symonowicz

    (Vienna University of Technology)

  • Stefan Wachter

    (Vienna University of Technology)

  • Dmitry K. Polyushkin

    (Vienna University of Technology)

  • Aday J. Molina-Mendoza

    (Vienna University of Technology)

  • Thomas Mueller

    (Vienna University of Technology)

Abstract

Machine vision technology has taken huge leaps in recent years, and is now becoming an integral part of various intelligent systems, including autonomous vehicles and robotics. Usually, visual information is captured by a frame-based camera, converted into a digital format and processed afterwards using a machine-learning algorithm such as an artificial neural network (ANN)1. The large amount of (mostly redundant) data passed through the entire signal chain, however, results in low frame rates and high power consumption. Various visual data preprocessing techniques have thus been developed2–7 to increase the efficiency of the subsequent signal processing in an ANN. Here we demonstrate that an image sensor can itself constitute an ANN that can simultaneously sense and process optical images without latency. Our device is based on a reconfigurable two-dimensional (2D) semiconductor8,9 photodiode10–12 array, and the synaptic weights of the network are stored in a continuously tunable photoresponsivity matrix. We demonstrate both supervised and unsupervised learning and train the sensor to classify and encode images that are optically projected onto the chip with a throughput of 20 million bins per second.

Suggested Citation

  • Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
  • Handle: RePEc:nat:nature:v:579:y:2020:i:7797:d:10.1038_s41586-020-2038-x
    DOI: 10.1038/s41586-020-2038-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2038-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2038-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:579:y:2020:i:7797:d:10.1038_s41586-020-2038-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.