IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25154-w.html
   My bibliography  Save this article

Small tandem DNA duplications result from CST-guided Pol α-primase action at DNA break termini

Author

Listed:
  • Joost Schimmel

    (Leiden University Medical Center)

  • Núria Muñoz-Subirana

    (Leiden University Medical Center)

  • Hanneke Kool

    (Leiden University Medical Center)

  • Robin Schendel

    (Leiden University Medical Center)

  • Marcel Tijsterman

    (Leiden University Medical Center
    Leiden University)

Abstract

Small tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase α (Pol α)-primase in tandem duplication formation at breaks having complementary 3′ ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3′ tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3′ overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.

Suggested Citation

  • Joost Schimmel & Núria Muñoz-Subirana & Hanneke Kool & Robin Schendel & Marcel Tijsterman, 2021. "Small tandem DNA duplications result from CST-guided Pol α-primase action at DNA break termini," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25154-w
    DOI: 10.1038/s41467-021-25154-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25154-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25154-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Levesque & Diana Mayorga & Jean-Philippe Fiset & Claudia Goupil & Alexis Duringer & Andréanne Loiselle & Eva Bouchard & Daniel Agudelo & Yannick Doyon, 2022. "Marker-free co-selection for successive rounds of prime editing in human cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25154-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.