IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43685-2.html
   My bibliography  Save this article

CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection

Author

Listed:
  • Rishi Kumar Jaiswal

    (Loyola University Chicago Stritch School of Medicine)

  • Kai-Hang Lei

    (National Taiwan University)

  • Megan Chastain

    (Washington State University)

  • Yuan Wang

    (Rutgers Cancer Institute of New Jersey)

  • Olga Shiva

    (Washington State University)

  • Shan Li

    (Washington University School of Medicine)

  • Zhongsheng You

    (Washington University School of Medicine)

  • Peter Chi

    (National Taiwan University
    Academia Sinica)

  • Weihang Chai

    (Loyola University Chicago Stritch School of Medicine)

Abstract

Keeping replication fork stable is essential for safeguarding genome integrity; hence, its protection is highly regulated. The CTC1-STN1-TEN1 (CST) complex protects stalled forks from aberrant MRE11-mediated nascent strand DNA degradation (NSD). However, the activation mechanism for CST at forks is unknown. Here, we report that STN1 is phosphorylated in its intrinsic disordered region. Loss of STN1 phosphorylation reduces the replication stress-induced STN1 localization to stalled forks, elevates NSD, increases MRE11 access to stalled forks, and decreases RAD51 localization at forks, leading to increased genome instability under perturbed DNA replication condition. STN1 is phosphorylated by both the ATR-CHK1 and the calcium-sensing kinase CaMKK2 in response to hydroxyurea/aphidicolin treatment or elevated cytosolic calcium concentration. Cancer-associated STN1 variants impair STN1 phosphorylation, conferring inability of fork protection. Collectively, our study uncovers that CaMKK2 and ATR-CHK1 target STN1 to enable its fork protective function, and suggests an important role of STN1 phosphorylation in cancer development.

Suggested Citation

  • Rishi Kumar Jaiswal & Kai-Hang Lei & Megan Chastain & Yuan Wang & Olga Shiva & Shan Li & Zhongsheng You & Peter Chi & Weihang Chai, 2023. "CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43685-2
    DOI: 10.1038/s41467-023-43685-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43685-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43685-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sofija Mijic & Ralph Zellweger & Nagaraja Chappidi & Matteo Berti & Kurt Jacobs & Karun Mutreja & Sebastian Ursich & Arnab Ray Chaudhuri & Andre Nussenzweig & Pavel Janscak & Massimo Lopes, 2017. "Replication fork reversal triggers fork degradation in BRCA2-defective cells," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    2. Qixiang He & Xiuhua Lin & Bianca L. Chavez & Sourav Agrawal & Benjamin L. Lusk & Ci Ji Lim, 2022. "Structures of the human CST-Polα–primase complex bound to telomere templates," Nature, Nature, vol. 608(7924), pages 826-832, August.
    3. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 535(7612), pages 382-387, July.
    4. Kai-Hang Lei & Han-Lin Yang & Hao-Yen Chang & Hsin-Yi Yeh & Dinh Duc Nguyen & Tzu-Yu Lee & Xinxing Lyu & Megan Chastain & Weihang Chai & Hung-Wen Li & Peter Chi, 2021. "Crosstalk between CST and RPA regulates RAD51 activity during replication stress," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Liuh-Yow Chen & Sophie Redon & Joachim Lingner, 2012. "The human CST complex is a terminator of telomerase activity," Nature, Nature, vol. 488(7412), pages 540-544, August.
    6. David L. Duffy & Gu Zhu & Xin Li & Marianna Sanna & Mark M. Iles & Leonie C. Jacobs & David M. Evans & Seyhan Yazar & Jonathan Beesley & Matthew H. Law & Peter Kraft & Alessia Visconti & John C. Taylo, 2018. "Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    7. Xuyang Feng & Shih-Jui Hsu & Anukana Bhattacharjee & Yongyao Wang & Jiajie Diao & Carolyn M. Price, 2018. "CTC1-STN1 terminates telomerase while STN1-TEN1 enables C-strand synthesis during telomere replication in colon cancer cells," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    8. Julius Gudmundsson & Gudmar Thorleifsson & Jon K. Sigurdsson & Lilja Stefansdottir & Jon G. Jonasson & Sigurjon A. Gudjonsson & Daniel F. Gudbjartsson & Gisli Masson & Hrefna Johannsdottir & Gisli H. , 2017. "A genome-wide association study yields five novel thyroid cancer risk loci," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    9. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Erratum: Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 539(7629), pages 456-456, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    2. Anastasia Hale & Ashna Dhoonmoon & Joshua Straka & Claudia M. Nicolae & George-Lucian Moldovan, 2023. "Multi-step processing of replication stress-derived nascent strand DNA gaps by MRE11 and EXO1 nucleases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Zu Ye & Shengfeng Xu & Yin Shi & Xueqian Cheng & Yuan Zhang & Sunetra Roy & Sarita Namjoshi & Michael A. Longo & Todd M. Link & Katharina Schlacher & Guang Peng & Dihua Yu & Bin Wang & John A. Tainer , 2024. "GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Ashna Dhoonmoon & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    10. Diego Dibitetto & Martin Liptay & Francesca Vivalda & Hülya Dogan & Ewa Gogola & Martín González Fernández & Alexandra Duarte & Jonas A. Schmid & Morgane Decollogny & Paola Francica & Sara Przetocka &, 2024. "H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Antonios Revythis & Anu Limbu & Christos Mikropoulos & Aruni Ghose & Elisabet Sanchez & Matin Sheriff & Stergios Boussios, 2022. "Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    13. Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Nagham Ghaddar & Yves Corda & Pierre Luciano & Martina Galli & Ylli Doksani & Vincent Géli, 2023. "The COMPASS subunit Spp1 protects nascent DNA at the Tus/Ter replication fork barrier by limiting DNA availability to nucleases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Natasha Ramakrishnan & Tyler M. Weaver & Lindsey N. Aubuchon & Ayda Woldegerima & Taylor Just & Kevin Song & Alessandro Vindigni & Bret D. Freudenthal & Priyanka Verma, 2024. "Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Ivo A. Hendriks & Sara C. Buch-Larsen & Evgeniia Prokhorova & Jonas D. Elsborg & Alexandra K.L.F.S. Rebak & Kang Zhu & Dragana Ahel & Claudia Lukas & Ivan Ahel & Michael L. Nielsen, 2021. "The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    18. Kate E. Coleman & Yandong Yin & Sarah Kit Leng Lui & Sarah Keegan & David Fenyo & Duncan J. Smith & Eli Rothenberg & Tony T. Huang, 2022. "USP1-trapping lesions as a source of DNA replication stress and genomic instability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Yumin Wang & Boya Gao & Luyuan Zhang & Xudong Wang & Xiaolan Zhu & Haibo Yang & Fengqi Zhang & Xueping Zhu & Badi Zhou & Sean Yao & Aiko Nagayama & Sanghoon Lee & Jian Ouyang & Siang-Boon Koh & Eric L, 2024. "Meiotic protein SYCP2 confers resistance to DNA-damaging agents through R-loop-mediated DNA repair," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43685-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.