IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50673-7.html
   My bibliography  Save this article

Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells

Author

Listed:
  • Natasha Ramakrishnan

    (Washington University School of Medicine)

  • Tyler M. Weaver

    (University of Kansas Medical Center
    University of Kansas Cancer Center)

  • Lindsey N. Aubuchon

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Ayda Woldegerima

    (Washington University School of Medicine)

  • Taylor Just

    (Washington University School of Medicine)

  • Kevin Song

    (Washington University School of Medicine)

  • Alessandro Vindigni

    (Washington University School of Medicine
    Washington University School of Medicine)

  • Bret D. Freudenthal

    (University of Kansas Medical Center
    University of Kansas Cancer Center)

  • Priyanka Verma

    (Washington University School of Medicine
    Washington University School of Medicine)

Abstract

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.

Suggested Citation

  • Natasha Ramakrishnan & Tyler M. Weaver & Lindsey N. Aubuchon & Ayda Woldegerima & Taylor Just & Kevin Song & Alessandro Vindigni & Bret D. Freudenthal & Priyanka Verma, 2024. "Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50673-7
    DOI: 10.1038/s41467-024-50673-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50673-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50673-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michal Zimmermann & Olga Murina & Martin A. M. Reijns & Angelo Agathanggelou & Rachel Challis & Žygimantė Tarnauskaitė & Morwenna Muir & Adeline Fluteau & Michael Aregger & Andrea McEwan & Wei Yuan & , 2018. "CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions," Nature, Nature, vol. 559(7713), pages 285-289, July.
    2. Silvia Domcke & Rileen Sinha & Douglas A. Levine & Chris Sander & Nikolaus Schultz, 2013. "Evaluating cell lines as tumour models by comparison of genomic profiles," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
    3. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 535(7612), pages 382-387, July.
    4. Charlotte Blessing & Katja Apelt & Diana Heuvel & Claudia Gonzalez-Leal & Magdalena B. Rother & Melanie Woude & Román González-Prieto & Adi Yifrach & Avital Parnas & Rashmi G. Shah & Tia Tyrsett Kuo &, 2022. "XPC–PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Rodrigo A. Gier & Krista A. Budinich & Niklaus H. Evitt & Zhendong Cao & Elizabeth S. Freilich & Qingzhou Chen & Jun Qi & Yemin Lan & Rahul M. Kohli & Junwei Shi, 2020. "High-performance CRISPR-Cas12a genome editing for combinatorial genetic screening," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Erratum: Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 539(7629), pages 456-456, November.
    7. Tyler M. Weaver & Nicole M. Hoitsma & Jonah J. Spencer & Lokesh Gakhar & Nicholas J. Schnicker & Bret D. Freudenthal, 2022. "Structural basis for APE1 processing DNA damage in the nucleosome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    3. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Anastasia Hale & Ashna Dhoonmoon & Joshua Straka & Claudia M. Nicolae & George-Lucian Moldovan, 2023. "Multi-step processing of replication stress-derived nascent strand DNA gaps by MRE11 and EXO1 nucleases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Antonios Revythis & Anu Limbu & Christos Mikropoulos & Aruni Ghose & Elisabet Sanchez & Matin Sheriff & Stergios Boussios, 2022. "Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    7. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Ashna Dhoonmoon & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Nagham Ghaddar & Yves Corda & Pierre Luciano & Martina Galli & Ylli Doksani & Vincent Géli, 2023. "The COMPASS subunit Spp1 protects nascent DNA at the Tus/Ter replication fork barrier by limiting DNA availability to nucleases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Ivo A. Hendriks & Sara C. Buch-Larsen & Evgeniia Prokhorova & Jonas D. Elsborg & Alexandra K.L.F.S. Rebak & Kang Zhu & Dragana Ahel & Claudia Lukas & Ivan Ahel & Michael L. Nielsen, 2021. "The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    13. Zu Ye & Shengfeng Xu & Yin Shi & Xueqian Cheng & Yuan Zhang & Sunetra Roy & Sarita Namjoshi & Michael A. Longo & Todd M. Link & Katharina Schlacher & Guang Peng & Dihua Yu & Bin Wang & John A. Tainer , 2024. "GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Kate E. Coleman & Yandong Yin & Sarah Kit Leng Lui & Sarah Keegan & David Fenyo & Duncan J. Smith & Eli Rothenberg & Tony T. Huang, 2022. "USP1-trapping lesions as a source of DNA replication stress and genomic instability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Yumin Wang & Boya Gao & Luyuan Zhang & Xudong Wang & Xiaolan Zhu & Haibo Yang & Fengqi Zhang & Xueping Zhu & Badi Zhou & Sean Yao & Aiko Nagayama & Sanghoon Lee & Jian Ouyang & Siang-Boon Koh & Eric L, 2024. "Meiotic protein SYCP2 confers resistance to DNA-damaging agents through R-loop-mediated DNA repair," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Sameer Bikram Shah & Youhang Li & Shibo Li & Qing Hu & Tong Wu & Yanmeng Shi & Tran Nguyen & Isaac Ive & Linda Shi & Hailong Wang & Xiaohua Wu, 2024. "53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR)," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    19. Rishi Kumar Jaiswal & Kai-Hang Lei & Megan Chastain & Yuan Wang & Olga Shiva & Shan Li & Zhongsheng You & Peter Chi & Weihang Chai, 2023. "CaMKK2 and CHK1 phosphorylate human STN1 in response to replication stress to protect stalled forks from aberrant resection," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Diego Dibitetto & Martin Liptay & Francesca Vivalda & Hülya Dogan & Ewa Gogola & Martín González Fernández & Alexandra Duarte & Jonas A. Schmid & Morgane Decollogny & Paola Francica & Sara Przetocka &, 2024. "H2AX promotes replication fork degradation and chemosensitivity in BRCA-deficient tumours," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50673-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.