IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29841-0.html
   My bibliography  Save this article

Mre11-Rad50 oligomerization promotes DNA double-strand break repair

Author

Listed:
  • Vera M. Kissling

    (Eidgenössische Technische Hochschule (ETH))

  • Giordano Reginato

    (Eidgenössische Technische Hochschule (ETH)
    Università della Svizzera italiana (USI), Faculty of Biomedical Sciences)

  • Eliana Bianco

    (Eidgenössische Technische Hochschule (ETH))

  • Kristina Kasaciunaite

    (Universität Leipzig)

  • Janny Tilma

    (Eidgenössische Technische Hochschule (ETH))

  • Gea Cereghetti

    (Eidgenössische Technische Hochschule (ETH))

  • Natalie Schindler

    (Johannes Gutenberg University)

  • Sung Sik Lee

    (Eidgenössische Technische Hochschule (ETH)
    Eidgenössische Technische Hochschule (ETH))

  • Raphaël Guérois

    (CNRS, Université Paris-Sud, Université Paris-Saclay)

  • Brian Luke

    (Johannes Gutenberg University
    Institute of Molecular Biology (IMB))

  • Ralf Seidel

    (Universität Leipzig)

  • Petr Cejka

    (Eidgenössische Technische Hochschule (ETH)
    Università della Svizzera italiana (USI), Faculty of Biomedical Sciences)

  • Matthias Peter

    (Eidgenössische Technische Hochschule (ETH))

Abstract

The conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S. cerevisiae Mre11-Rad50 with or without Xrs2 forms higher-order assemblies in solution and on DNA. Rad50 mediates such oligomerization, and mutations in a conserved Rad50 beta-sheet enhance or disrupt oligomerization. We demonstrate that Mre11-Rad50-Xrs2 oligomerization facilitates foci formation, DNA damage signaling, repair, and telomere maintenance in vivo. Mre11-Rad50 oligomerization does not affect its exonuclease activity but drives endonucleolytic cleavage at multiple sites on the 5′-DNA strand near double-strand breaks. Interestingly, mutations in the human RAD50 beta-sheet are linked to hereditary cancer predisposition and our findings might provide insights into their potential role in chemoresistance.

Suggested Citation

  • Vera M. Kissling & Giordano Reginato & Eliana Bianco & Kristina Kasaciunaite & Janny Tilma & Gea Cereghetti & Natalie Schindler & Sung Sik Lee & Raphaël Guérois & Brian Luke & Ralf Seidel & Petr Cejka, 2022. "Mre11-Rad50 oligomerization promotes DNA double-strand break repair," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29841-0
    DOI: 10.1038/s41467-022-29841-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29841-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29841-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pablo Huertas & Felipe Cortés-Ledesma & Alessandro A. Sartori & Andrés Aguilera & Stephen P. Jackson, 2008. "CDK targets Sae2 to control DNA-end resection and homologous recombination," Nature, Nature, vol. 455(7213), pages 689-692, October.
    2. Elda Cannavo & Petr Cejka, 2014. "Sae2 promotes dsDNA endonuclease activity within Mre11–Rad50–Xrs2 to resect DNA breaks," Nature, Nature, vol. 514(7520), pages 122-125, October.
    3. Hisashi Tatebe & Chew Theng Lim & Hiroki Konno & Kazuhiro Shiozaki & Akira Shinohara & Takayuki Uchihashi & Asako Furukohri, 2020. "Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Roxanne Oshidari & Richard Huang & Maryam Medghalchi & Elizabeth Y. W. Tse & Nasser Ashgriz & Hyun O. Lee & Haley Wyatt & Karim Mekhail, 2020. "DNA repair by Rad52 liquid droplets," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Adar Sonn-Segev & Katarina Belacic & Tatyana Bodrug & Gavin Young & Ryan T. VanderLinden & Brenda A. Schulman & Johannes Schimpf & Thorsten Friedrich & Phat Vinh Dip & Thomas U. Schwartz & Benedikt Ba, 2020. "Quantifying the heterogeneity of macromolecular machines by mass photometry," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Eleni P. Mimitou & Lorraine S. Symington, 2008. "Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing," Nature, Nature, vol. 455(7214), pages 770-774, October.
    7. Elda Cannavo & Dominic Johnson & Sara N. Andres & Vera M. Kissling & Julia K. Reinert & Valerie Garcia & Dorothy A. Erie & Daniel Hess & Nicolas H. Thomä & Radoslav I. Enchev & Matthias Peter & R. Sco, 2018. "Regulatory control of DNA end resection by Sae2 phosphorylation," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    8. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 535(7612), pages 382-387, July.
    9. Arnab Ray Chaudhuri & Elsa Callen & Xia Ding & Ewa Gogola & Alexandra A. Duarte & Ji-Eun Lee & Nancy Wong & Vanessa Lafarga & Jennifer A. Calvo & Nicholas J. Panzarino & Sam John & Amanda Day & Anna V, 2016. "Erratum: Replication fork stability confers chemoresistance in BRCA-deficient cells," Nature, Nature, vol. 539(7629), pages 456-456, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorenzo Galanti & Martina Peritore & Robert Gnügge & Elda Cannavo & Johannes Heipke & Maria Dilia Palumbieri & Barbara Steigenberger & Lorraine S. Symington & Petr Cejka & Boris Pfander, 2024. "Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Tomoki Tamai & Giordano Reginato & Ryusei Ojiri & Issei Morita & Alexandra Avrutis & Petr Cejka & Miki Shinohara & Katsunori Sugimoto, 2024. "Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    4. Nikolaos Parisis & Pablo D. Dans & Muhammad Jbara & Balveer Singh & Diane Schausi-Tiffoche & Diego Molina-Serrano & Isabelle Brun-Heath & Denisa Hendrychová & Suman Kumar Maity & Diana Buitrago & Rafa, 2023. "Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Anastasia Hale & Ashna Dhoonmoon & Joshua Straka & Claudia M. Nicolae & George-Lucian Moldovan, 2023. "Multi-step processing of replication stress-derived nascent strand DNA gaps by MRE11 and EXO1 nucleases," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Inés Paniagua & Zainab Tayeh & Mattia Falcone & Santiago Hernández Pérez & Aurora Cerutti & Jacqueline J. L. Jacobs, 2022. "MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Cuige Zhu & Mari Iwase & Ziqian Li & Faliang Wang & Annabel Quinet & Alessandro Vindigni & Jieya Shao, 2022. "Profilin-1 regulates DNA replication forks in a context-dependent fashion by interacting with SNF2H and BOD1L," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Antonios Revythis & Anu Limbu & Christos Mikropoulos & Aruni Ghose & Elisabet Sanchez & Matin Sheriff & Stergios Boussios, 2022. "Recent Insights into PARP and Immuno-Checkpoint Inhibitors in Epithelial Ovarian Cancer," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    9. Ramona N. Moro & Uddipta Biswas & Suhas S. Kharat & Filip D. Duzanic & Prosun Das & Maria Stavrou & Maria C. Raso & Raimundo Freire & Arnab Ray Chaudhuri & Shyam K. Sharan & Lorenza Penengo, 2023. "Interferon restores replication fork stability and cell viability in BRCA-defective cells via ISG15," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Adrián Campos & Facundo Ramos & Lydia Iglesias & Celia Delgado & Eva Merino & Antonio Esperilla-Muñoz & Jaime Correa-Bordes & Andrés Clemente-Blanco, 2023. "Cdc14 phosphatase counteracts Cdk-dependent Dna2 phosphorylation to inhibit resection during recombinational DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Ashna Dhoonmoon & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Nagham Ghaddar & Yves Corda & Pierre Luciano & Martina Galli & Ylli Doksani & Vincent Géli, 2023. "The COMPASS subunit Spp1 protects nascent DNA at the Tus/Ter replication fork barrier by limiting DNA availability to nucleases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Natasha Ramakrishnan & Tyler M. Weaver & Lindsey N. Aubuchon & Ayda Woldegerima & Taylor Just & Kevin Song & Alessandro Vindigni & Bret D. Freudenthal & Priyanka Verma, 2024. "Nucleolytic processing of abasic sites underlies PARP inhibitor hypersensitivity in ALC1-deficient BRCA mutant cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Priya Kapoor-Vazirani & Sandip K. Rath & Xu Liu & Zhen Shu & Nicole E. Bowen & Yitong Chen & Ramona Haji-Seyed-Javadi & Waaqo Daddacha & Elizabeth V. Minten & Diana Danelia & Daniela Farchi & Duc M. D, 2022. "SAMHD1 deacetylation by SIRT1 promotes DNA end resection by facilitating DNA binding at double-strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Ivo A. Hendriks & Sara C. Buch-Larsen & Evgeniia Prokhorova & Jonas D. Elsborg & Alexandra K.L.F.S. Rebak & Kang Zhu & Dragana Ahel & Claudia Lukas & Ivan Ahel & Michael L. Nielsen, 2021. "The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    17. Zu Ye & Shengfeng Xu & Yin Shi & Xueqian Cheng & Yuan Zhang & Sunetra Roy & Sarita Namjoshi & Michael A. Longo & Todd M. Link & Katharina Schlacher & Guang Peng & Dihua Yu & Bin Wang & John A. Tainer , 2024. "GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Tanay Thakar & Ashna Dhoonmoon & Joshua Straka & Emily M. Schleicher & Claudia M. Nicolae & George-Lucian Moldovan, 2022. "Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Maria Dilia Palumbieri & Chiara Merigliano & Daniel González-Acosta & Danina Kuster & Jana Krietsch & Henriette Stoy & Thomas Känel & Svenja Ulferts & Bettina Welter & Joël Frey & Cyril Doerdelmann & , 2023. "Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Kate E. Coleman & Yandong Yin & Sarah Kit Leng Lui & Sarah Keegan & David Fenyo & Duncan J. Smith & Eli Rothenberg & Tony T. Huang, 2022. "USP1-trapping lesions as a source of DNA replication stress and genomic instability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29841-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.