IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32705-2.html
   My bibliography  Save this article

Arctic sea-ice loss is projected to lead to more frequent strong El Niño events

Author

Listed:
  • Jiping Liu

    (University at Albany, State University of New York)

  • Mirong Song

    (Chinese Academy of Sciences)

  • Zhu Zhu

    (Chinese Academy of Sciences)

  • Radley M. Horton

    (Columbia University Earth Institute)

  • Yongyun Hu

    (Peking University)

  • Shang-Ping Xie

    (University of California San Diego)

Abstract

Arctic sea ice has decreased substantially and is projected to reach a seasonally ice-free state in the coming decades. Little is known about whether dwindling Arctic sea ice is capable of influencing the occurrence of strong El Niño, a prominent mode of climate variability with global impacts. Based on time slice coupled model experiments, here we show that no significant change in the occurrence of strong El Niño is found in response to moderate Arctic sea-ice loss that is consistent with satellite observations to date. However, as the ice loss continues and the Arctic becomes seasonally ice-free, the frequency of strong El Niño events increases by more than one third, as defined by gradient-based indices that remove mean tropical Pacific warming induced by the seasonally ice-free Arctic. By comparing our time slice experiments with greenhouse warming experiments, we conclude that at least 37–48% of the increase of strong El Niño near the end of the 21st century is associated specifically with Arctic sea-ice loss. Further separation of Arctic sea-ice loss and greenhouse gas forcing only experiments implies that the seasonally ice-free Arctic might play a key role in driving significantly more frequent strong El Niño events.

Suggested Citation

  • Jiping Liu & Mirong Song & Zhu Zhu & Radley M. Horton & Yongyun Hu & Shang-Ping Xie, 2022. "Arctic sea-ice loss is projected to lead to more frequent strong El Niño events," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32705-2
    DOI: 10.1038/s41467-022-32705-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32705-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32705-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenju Cai & Simon Borlace & Matthieu Lengaigne & Peter van Rensch & Mat Collins & Gabriel Vecchi & Axel Timmermann & Agus Santoso & Michael J. McPhaden & Lixin Wu & Matthew H. England & Guojian Wang &, 2014. "Increasing frequency of extreme El Niño events due to greenhouse warming," Nature Climate Change, Nature, vol. 4(2), pages 111-116, February.
    2. Colin Raymond & Radley M. Horton & Jakob Zscheischler & Olivia Martius & Amir AghaKouchak & Jennifer Balch & Steven G. Bowen & Suzana J. Camargo & Jeremy Hess & Kai Kornhuber & Michael Oppenheimer & A, 2020. "Understanding and managing connected extreme events," Nature Climate Change, Nature, vol. 10(7), pages 611-621, July.
    3. Maria-Vittoria Guarino & Louise C. Sime & David Schröeder & Irene Malmierca-Vallet & Erica Rosenblum & Mark Ringer & Jeff Ridley & Danny Feltham & Cecilia Bitz & Eric J. Steig & Eric Wolff & Julienne , 2020. "Sea-ice-free Arctic during the Last Interglacial supports fast future loss," Nature Climate Change, Nature, vol. 10(10), pages 928-932, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binhe Luo & Dehai Luo & Yao Ge & Aiguo Dai & Lin Wang & Ian Simmonds & Cunde Xiao & Lixin Wu & Yao Yao, 2023. "Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño–Southern Oscillation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
    2. Savin Chand & Scott Power & Kevin Walsh & Neil Holbrook & Kathleen McInnes & Kevin Tory & Hamish Ramsay & Ron Hoeke & Anthony S. Kiem, 2023. "Climate processes and drivers in the Pacific and global warming: a review for informing Pacific planning agencies," Climatic Change, Springer, vol. 176(2), pages 1-16, February.
    3. Hosmay Lopez & Sang-Ki Lee & Dongmin Kim & Andrew T. Wittenberg & Sang-Wook Yeh, 2022. "Projections of faster onset and slower decay of El Niño in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Aguilar, Arturo & Vicarelli, Marta, 2022. "El Niño and children: Medium-term effects of early-life weather shocks on cognitive and health outcomes," World Development, Elsevier, vol. 150(C).
    5. Komali Kantamaneni & Sigamani Panneer & N.N.V. Sudha Rani & Udhayakumar Palaniswamy & Lekha D. Bhat & Carlos Jimenez-Bescos & Louis Rice, 2022. "Impact of Coastal Disasters on Women in Urban Slums: A New Index," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    6. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Ryan Cronin & Anthony Halog, 2022. "A Unique Perspective of Materials, Practices and Structures Within the Food, Energy and Water Nexus of Australian Urban Alternative Food Networks," Circular Economy and Sustainability, Springer, vol. 2(1), pages 327-349, March.
    8. Tao Geng & Wenju Cai & Lixin Wu & Agus Santoso & Guojian Wang & Zhao Jing & Bolan Gan & Yun Yang & Shujun Li & Shengpeng Wang & Zhaohui Chen & Michael J. McPhaden, 2022. "Emergence of changing Central-Pacific and Eastern-Pacific El Niño-Southern Oscillation in a warming climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Leo Kingston, S., 2024. "Time-varying parameters induced extreme events in Liénard systems and network," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Rong, Liu & Wang, Zhenbo & Li, Zhijun, 2024. "Unraveling the role of Financial Risk, social globalization and Economic Risk towards attaining sustainable environment in China: Does resources curse still holds," Resources Policy, Elsevier, vol. 88(C).
    12. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    13. Yadav, Alka & Das, Sourish & Bakar, K. Shuvo & Chakraborti, Anirban, 2023. "Understanding the complex dynamics of climate change in south-west Australia using Machine Learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    14. Glette-Iversen, Ingrid & Aven, Terje, 2021. "On the meaning of and relationship between dragon-kings, black swans and related concepts," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Katharina Waha & John Clarke & Kavina Dayal & Mandy Freund & Craig Heady & Irene Parisi & Elisabeth Vogel, 2022. "Past and future rainfall changes in the Australian midlatitudes and implications for agriculture," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    16. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    17. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Anil Deo & Savin S. Chand & R. Duncan McIntosh & Bipen Prakash & Neil J. Holbrook & Andrew Magee & Alick Haruhiru & Philip Malsale, 2022. "Severe tropical cyclones over southwest Pacific Islands: economic impacts and implications for disaster risk management," Climatic Change, Springer, vol. 172(3), pages 1-23, June.
    19. Koester, Gerrit & Lis, Eliza & Nickel, Christiane & Osbat, Chiara & Smets, Frank, 2021. "Understanding low inflation in the euro area from 2013 to 2019: cyclical and structural drivers," Occasional Paper Series 280, European Central Bank.
    20. Ling Yu & Pengjun Zhao & Junqing Tang & Liang Pang & Zhaoya Gong, 2023. "Social inequality of urban park use during the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32705-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.