IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35748-7.html
   My bibliography  Save this article

Interaction between dry and hot extremes at a global scale using a cascade modeling framework

Author

Listed:
  • Sourav Mukherjee

    (Clemson University)

  • Ashok Kumar Mishra

    (Clemson University)

  • Jakob Zscheischler

    (Helmholtz Centre for Environmental Research - UFZ)

  • Dara Entekhabi

    (Massachusetts Institute of Technology)

Abstract

Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts.

Suggested Citation

  • Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35748-7
    DOI: 10.1038/s41467-022-35748-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35748-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35748-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Forzieri & Diego G. Miralles & Philippe Ciais & Ramdane Alkama & Youngryel Ryu & Gregory Duveiller & Ke Zhang & Eddy Robertson & Markus Kautz & Brecht Martens & Chongya Jiang & Almut Arneth &, 2020. "Increased control of vegetation on global terrestrial energy fluxes," Nature Climate Change, Nature, vol. 10(4), pages 356-362, April.
    2. Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Colin Raymond & Radley M. Horton & Jakob Zscheischler & Olivia Martius & Amir AghaKouchak & Jennifer Balch & Steven G. Bowen & Suzana J. Camargo & Jeremy Hess & Kai Kornhuber & Michael Oppenheimer & A, 2020. "Understanding and managing connected extreme events," Nature Climate Change, Nature, vol. 10(7), pages 611-621, July.
    4. Jakob Runge & Sebastian Bathiany & Erik Bollt & Gustau Camps-Valls & Dim Coumou & Ethan Deyle & Clark Glymour & Marlene Kretschmer & Miguel D. Mahecha & Jordi Muñoz-Marí & Egbert H. Nes & Jonas Peters, 2019. "Inferring causation from time series in Earth system sciences," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    6. Goutam Konapala & Ashok K. Mishra & Yoshihide Wada & Michael E. Mann, 2020. "Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lifei Lin & Chundi Hu & Bin Wang & Renguang Wu & Zeming Wu & Song Yang & Wenju Cai & Peiliang Li & Xuejun Xiong & Dake Chen, 2024. "Atlantic origin of the increasing Asian westerly jet interannual variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Zsuzsanna Farkas & Angéla Anda & Gyula Vida & Ottó Veisz & Balázs Varga, 2021. "CO 2 Responses of Winter Wheat, Barley and Oat Cultivars under Optimum and Limited Irrigation," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    3. Komali Kantamaneni & Sigamani Panneer & N.N.V. Sudha Rani & Udhayakumar Palaniswamy & Lekha D. Bhat & Carlos Jimenez-Bescos & Louis Rice, 2022. "Impact of Coastal Disasters on Women in Urban Slums: A New Index," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    4. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
    6. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    8. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    9. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    11. Victor Funso Agunbiade & Olubukola Oluranti Babalola, 2023. "Endophytic and rhizobacteria functionalities in alleviating drought stress in maize plants," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-18.
    12. Rong, Liu & Wang, Zhenbo & Li, Zhijun, 2024. "Unraveling the role of Financial Risk, social globalization and Economic Risk towards attaining sustainable environment in China: Does resources curse still holds," Resources Policy, Elsevier, vol. 88(C).
    13. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Austin G. McCoy & Richard R. Belanger & Carl A. Bradley & Daniel G. Cerritos-Garcia & Vinicius C. Garnica & Loren J. Giesler & Pablo E. Grijalba & Eduardo Guillin & Maria A. Henriquez & Yong Min Kim &, 2023. "A global-temporal analysis on Phytophthora sojae resistance-gene efficacy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Batsuren Dorjsuren & Nyamdavaa Batsaikhan & Denghua Yan & Otgonbayar Yadamjav & Sonomdagva Chonokhuu & Altanbold Enkhbold & Tianlin Qin & Baisha Weng & Wuxia Bi & Otgonbayar Demberel & Tsasanchimeg Bo, 2021. "Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    16. Egerer, Sabine & Puente, Andrea Fajardo & Peichl, Michael & Rakovec, Oldrich & Samaniego, Luis & Schneider, Uwe A., 2023. "Limited potential of irrigation to prevent potato yield losses in Germany under climate change," Agricultural Systems, Elsevier, vol. 207(C).
    17. Zhaoxia Ye & Aihong Fu & Shuhua Zhang & Yuhai Yang, 2020. "Suitable Scale of an Oasis in Different Scenarios in an Arid Region of China: A Case Study of the Ejina Oasis," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    18. Malpede, Maurizio & Percoco, Marco, 2024. "The long-term economic effects of aridification," Ecological Economics, Elsevier, vol. 217(C).
    19. Listiana, Indah & Nurmayasari, Indah & Bursan, Rinaldi & Sukmayanto, Muher & Yanfika, Helvi & Widyastuti, R.A.D, 2021. "Farmers' Capacity and Rice Productivity in Climate Change Adaption in Central Lampung Regency, Indonesia," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 11(04), January.
    20. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35748-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.