IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v126y2023ics0140988323005108.html
   My bibliography  Save this article

Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions

Author

Listed:
  • Diebold, Francis X.
  • Rudebusch, Glenn D.

Abstract

Arctic sea ice has steadily diminished as atmospheric greenhouse gas concentrations have increased. Using observed data from 1979 to 2019, we estimate a close contemporaneous linear relationship between Arctic sea ice area and cumulative carbon dioxide emissions. For comparison, we provide analogous regression estimates using simulated data from global climate models (drawn from the CMIP5 and CMIP6 model comparison exercises). The carbon sensitivity of Arctic sea ice area is considerably stronger in the observed data than in the climate models. Thus, for a given future emissions path, an ice-free Arctic is likely to occur much earlier than the climate models project. Furthermore, little progress has been made in recent global climate modeling (from CMIP5 to CMIP6) to more accurately match the observed carbon-climate response of Arctic sea ice.

Suggested Citation

  • Diebold, Francis X. & Rudebusch, Glenn D., 2023. "Climate models underestimate the sensitivity of Arctic sea ice to carbon emissions," Energy Economics, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323005108
    DOI: 10.1016/j.eneco.2023.107012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323005108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    2. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe & Rudebusch, Glenn D. & Zhang, Boyuan, 2021. "Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1509-1519.
    3. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).
    4. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    5. Kiefer, Nicholas M. & Salmon, Mark, 1983. "Testing normality in econometric models," Economics Letters, Elsevier, vol. 11(1-2), pages 123-127.
    6. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    7. Maria-Vittoria Guarino & Louise C. Sime & David Schröeder & Irene Malmierca-Vallet & Erica Rosenblum & Mark Ringer & Jeff Ridley & Danny Feltham & Cecilia Bitz & Eric J. Steig & Eric Wolff & Julienne , 2020. "Sea-ice-free Arctic during the Last Interglacial supports fast future loss," Nature Climate Change, Nature, vol. 10(10), pages 928-932, October.
    8. Julienne Stroeve & Mark Serreze & Marika Holland & Jennifer Kay & James Malanik & Andrew Barrett, 2012. "The Arctic’s rapidly shrinking sea ice cover: a research synthesis," Climatic Change, Springer, vol. 110(3), pages 1005-1027, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).
    2. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).
    3. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2024. "Reprint of: When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 239(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diebold, Francis X. & Rudebusch, Glenn D., 2022. "Probability assessments of an ice-free Arctic: Comparing statistical and climate model projections," Journal of Econometrics, Elsevier, vol. 231(2), pages 520-534.
    2. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2023. "When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 236(2).
    3. Diebold, Francis X. & Rudebusch, Glenn D. & Göbel, Maximilian & Goulet Coulombe, Philippe & Zhang, Boyuan, 2024. "Reprint of: When will Arctic sea ice disappear? Projections of area, extent, thickness, and volume," Journal of Econometrics, Elsevier, vol. 239(1).
    4. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe, 2023. "Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models," Energy Economics, Elsevier, vol. 124(C).
    5. Marc Gronwald, 2023. "Explosive Temperatures," CESifo Working Paper Series 10680, CESifo.
    6. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe & Rudebusch, Glenn D. & Zhang, Boyuan, 2021. "Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1509-1519.
    7. B. Cooper Boniece & Lajos Horv'ath & Lorenzo Trapani, 2023. "On changepoint detection in functional data using empirical energy distance," Papers 2310.04853, arXiv.org.
    8. Marina Friedrich & Luca Margaritella & Stephan Smeekes, 2023. "High-Dimensional Granger Causality for Climatic Attribution," Papers 2302.03996, arXiv.org, revised Jun 2024.
    9. Athanasopoulos, George & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor & Vahid, Farshid, 2011. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Journal of Econometrics, Elsevier, vol. 164(1), pages 116-129, September.
    10. Tomas Konecny & Oxana Babecka-Kucharcukova, 2016. "Credit Spreads and the Links between the Financial and Real Sectors in a Small Open Economy: The Case of the Czech Republic," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 302-321, August.
    11. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Morita, Hiroshi, 2014. "External shocks and Japanese business cycles: Evidence from a sign-restricted VAR model," Japan and the World Economy, Elsevier, vol. 30(C), pages 59-74.
    13. Titus O. Awokuse, 2003. "Is the export-led growth hypothesis valid for Canada?," Canadian Journal of Economics, Canadian Economics Association, vol. 36(1), pages 126-136, February.
    14. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    15. Federico Di Pace & Matthias Hertweck, 2019. "Labor Market Frictions, Monetary Policy, and Durable Goods," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 274-304, April.
    16. Bajo-Rubio, Oscar & Díaz-Roldán, Carmen & Esteve, Vicente, 2014. "Deficit sustainability, and monetary versus fiscal dominance: The case of Spain, 1850–2000," Journal of Policy Modeling, Elsevier, vol. 36(5), pages 924-937.
    17. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    18. van Amano, Robert A & Norden, Simon, 1998. "Exchange Rates and Oil Prices," Review of International Economics, Wiley Blackwell, vol. 6(4), pages 683-694, November.
    19. Camgöz, Mevlüt & Topal, Mehmet Hanefi, 2022. "Identifying the asymmetric price dynamics of Islamic equities: Implications for international investors," Research in International Business and Finance, Elsevier, vol. 60(C).
    20. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.

    More about this item

    Keywords

    Arctic sea ice area; Climate change; Climate prediction;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s0140988323005108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.