CD4 expression in effector T cells depends on DNA demethylation over a developmentally established stimulus-responsive element
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-28914-4
Download full text from publisher
References listed on IDEAS
- Xue Guo & Ling Wang & Jie Li & Zhanyu Ding & Jianxiong Xiao & Xiaotong Yin & Shuang He & Pan Shi & Liping Dong & Guohong Li & Changlin Tian & Jiawei Wang & Yao Cong & Yanhui Xu, 2015. "Structural insight into autoinhibition and histone H3-induced activation of DNMT3A," Nature, Nature, vol. 517(7536), pages 640-644, January.
- Priya D. Issuree & Kenneth Day & Christy Au & Ramya Raviram & Paul Zappile & Jane A. Skok & Hai-Hui Xue & Richard M. Myers & Dan R. Littman, 2018. "Stage-specific epigenetic regulation of CD4 expression by coordinated enhancer elements during T cell development," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
- Satoshi Kojo & Nighat Yasmin & Sawako Muroi & Mari Tenno & Ichiro Taniuchi, 2018. "Runx-dependent and silencer-independent repression of a maturation enhancer in the Cd4 gene," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyi Chen & Yiran Guo & Ting Zhao & Jiuwei Lu & Jian Fang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structural basis for the H2AK119ub1-specific DNMT3A-nucleosome interaction," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Linfeng Gao & Yiran Guo & Mahamaya Biswal & Jiuwei Lu & Jiekai Yin & Jian Fang & Xinyi Chen & Zengyu Shao & Mengjiang Huang & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2022. "Structure of DNMT3B homo-oligomer reveals vulnerability to impairment by ICF mutations," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Seiichi Yano & Takashi Ishiuchi & Shusaku Abe & Satoshi H. Namekawa & Gang Huang & Yoshihiro Ogawa & Hiroyuki Sasaki, 2022. "Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Jiuwei Lu & Yiran Guo & Jiekai Yin & Jianbin Chen & Yinsheng Wang & Gang Greg Wang & Jikui Song, 2024. "Structure-guided functional suppression of AML-associated DNMT3A hotspot mutations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Naoki Kubo & Ryuji Uehara & Shuhei Uemura & Hiroaki Ohishi & Kenjiro Shirane & Hiroyuki Sasaki, 2024. "Combined and differential roles of ADD domains of DNMT3A and DNMT3L on DNA methylation landscapes in mouse germ cells," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28914-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.