IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32133-2.html
   My bibliography  Save this article

Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature

Author

Listed:
  • Huai Chen

    (Sun Yat-sen University)

  • Mingyang Wei

    (University of Toronto)

  • Yantao He

    (Sun Yat-sen University)

  • Jehad Abed

    (University of Toronto)

  • Sam Teale

    (University of Toronto)

  • Edward H. Sargent

    (University of Toronto)

  • Zhenyu Yang

    (Sun Yat-sen University)

Abstract

Colour-tuned phosphors are promising for advanced security applications such as multi-modal anti-counterfeiting and data encryption. The practical adoption of colour-tuned phosphors requires these materials to be responsive to multiple stimuli (e.g., excitation wavelength, excitation waveform, and temperature) and exhibit excellent materials stability simultaneously. Here we report germanium silicon oxide (GSO) – a heavy-metal-free inorganic phosphor – that exhibits colour-tuned ultra-long phosphorescence and delayed fluorescence across a broad temperature range (300 – 500 K) in air. We developed a sol-gel processing strategy to prepare amorphous oxides containing homogeneously dispersed Si and Ge atoms. The co-existence of Ge and Si luminescent centres (LC) leads to an excitation-dependent luminescence change across the UV-to-visible region. GSO exhibits Si LC-related ultra-long phosphorescence at room-temperature and thermally activated delayed fluorescence at temperatures as high as 573 K. This long-lived PL is sensitized via the energy transfer from Ge defects to Si LCs, which provides PL lifetime tunability for GSO phosphors. The oxide scaffold of GSO offers 500-day materials stability in air; and 1-week stability in strong acidic and basic solutions. Using GSO/polymer hybrids, we demonstrated colour-tuned security tags whose emission wavelength and lifetime can be controlled via the excitation wavelength, and temperature, indicating promise in security applications.

Suggested Citation

  • Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32133-2
    DOI: 10.1038/s41467-022-32133-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32133-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32133-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanyang Han & Renren Deng & Qifei Gu & Limeng Ni & Uyen Huynh & Jiangbin Zhang & Zhigao Yi & Baodan Zhao & Hiroyuki Tamura & Anton Pershin & Hui Xu & Zhiyuan Huang & Shahab Ahmad & Mojtaba Abdi-Jalebi, 2020. "Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright," Nature, Nature, vol. 587(7835), pages 594-599, November.
    2. Sergii Yakunin & Jana Chaaban & Bogdan M. Benin & Ihor Cherniukh & Caterina Bernasconi & Annelies Landuyt & Yevhen Shynkarenko & Sami Bolat & Christoph Hofer & Yaroslav E. Romanyuk & Stefano Cattaneo , 2021. "Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Suzhi Cai & Huili Ma & Huifang Shi & He Wang & Xuan Wang & Leixin Xiao & Wenpeng Ye & Kaiwei Huang & Xudong Cao & Nan Gan & Chaoqun Ma & Mingxing Gu & Lulu Song & Hai Xu & Youtian Tao & Chunfeng Zhang, 2019. "Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Min Sang Kwon & Youngchang Yu & Caleb Coburn & Andrew W. Phillips & Kyeongwoon Chung & Apoorv Shanker & Jaehun Jung & Gunho Kim & Kevin Pipe & Stephen R. Forrest & Ji Ho Youk & Johannes Gierschner & J, 2015. "Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    5. Long Gu & Hongwei Wu & Huili Ma & Wenpeng Ye & Wenyong Jia & He Wang & Hongzhong Chen & Nan Zhang & Dongdong Wang & Cheng Qian & Zhongfu An & Wei Huang & Yanli Zhao, 2020. "Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Yongfeng Zhang & Liang Gao & Xian Zheng & Zhonghao Wang & Chaolong Yang & Hailong Tang & Lunjun Qu & Youbing Li & Yanli Zhao, 2021. "Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Zhao Gao & Yifei Han & Feng Wang, 2018. "Cooperative supramolecular polymers with anthracene‒endoperoxide photo-switching for fluorescent anti-counterfeiting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    8. Yuqiong Sun & Shuting Liu & Luyi Sun & Shuangshuang Wu & Guangqi Hu & Xiaoliang Pang & Andrew T. Smith & Chaofan Hu & Songshan Zeng & Weixing Wang & Yingliang Liu & Mingtao Zheng, 2020. "Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianhong Chen & Dongpeng Yan, 2024. "Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Qing Yang & Xinyi Yang & Yixuan Wang & Yunfan Fei & Fang Li & Haiyan Zheng & Kuo Li & Yibo Han & Takanori Hattori & Pinwen Zhu & Shuaiqiang Zhao & Leiming Fang & Xuyuan Hou & Zhaodong Liu & Bing Yang , 2024. "Brightening triplet excitons enable high-performance white-light emission in organic small molecules via integrating n–π*/π–π* transitions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xue Chen & Mengfen Che & Weidong Xu & Zhongbin Wu & Yung Doug Suh & Suli Wu & Xiaowang Liu & Wei Huang, 2024. "Matrix-induced defects and molecular doping in the afterglow of SiO2 microparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Jinho Choi & Healin Im & Jung-Moo Heo & Do Wan Kim & Hanjie Jiang & Alexander Stark & Wenhao Shao & Paul M. Zimmerman & Gi Wan Jeon & Jae-Won Jang & Euy Heon Hwang & Sunkook Kim & Dong Hyuk Park & Jin, 2024. "Microsecond triplet emission from organic chromophore-transition metal dichalcogenide hybrids via through-space spin orbit proximity effect," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Jingxuan You & Xin Zhang & Qinying Nan & Kunfeng Jin & Jinming Zhang & Yirong Wang & Chunchun Yin & Zhiyong Yang & Jun Zhang, 2023. "Aggregation-regulated room-temperature phosphorescence materials with multi-mode emission, adjustable excitation-dependence and visible-light excitation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Yiqian Tang & Yiyu Cai & Kunpeng Dou & Jianqing Chang & Wei Li & Shanshan Wang & Mingzi Sun & Bolong Huang & Xiaofeng Liu & Jianrong Qiu & Lei Zhou & Mingmei Wu & Jun-Cheng Zhang, 2024. "Dynamic multicolor emissions of multimodal phosphors by Mn2+ trace doping in self-activated CaGa4O7," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Yingxiang Zhai & Shujun Li & Jian Li & Shouxin Liu & Tony D. James & Jonathan L. Sessler & Zhijun Chen, 2023. "Room temperature phosphorescence from natural wood activated by external chloride anion treatment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Rui Tian & Shuo Gao & Kaitao Li & Chao Lu, 2023. "Design of mechanical-robust phosphorescence materials through covalent click reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Jinhui Huang & Yue Jiang & Qiuyu Chen & Hui Xie & Shaobing Zhou, 2023. "Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Pengwei Xiao & Zhoufan Zhang & Junjun Ge & Yalei Deng & Xufeng Chen & Jian-Rong Zhang & Zhengtao Deng & Yu Kambe & Dmitri V. Talapin & Yuanyuan Wang, 2023. "Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Qingao Chen & Lunjun Qu & Hui Hou & Jiayue Huang & Chen Li & Ying Zhu & Yongkang Wang & Xiaohong Chen & Qian Zhou & Yan Yang & Chaolong Yang, 2024. "Long lifetimes white afterglow in slightly crosslinked polymer systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Zhao Jiang & Liangrui He & Zhiwen Yang & Huibin Qiu & Xiaoyuan Chen & Xujiang Yu & Wanwan Li, 2023. "Ultra-wideband-responsive photon conversion through co-sensitization in lanthanide nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Dian-Xue Ma & Zhong-Qiu Li & Kun Tang & Zhong-Liang Gong & Jiang-Yang Shao & Yu-Wu Zhong, 2024. "Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Mengnan Cao & Yiran Ren & Yue Wu & Jingjie Shen & Shujun Li & Zhen-Qiang Yu & Shouxin Liu & Jian Li & Orlando J. Rojas & Zhijun Chen, 2024. "Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Wang, Xiaohui & Xu, Li & Ge, Shengbo & Foong, Shin Ying & Liew, Rock Keey & Fong Chong, William Woei & Verma, Meenakshi & Naushad, Mu. & Park, Young-Kwon & Lam, Su Shiung & Li, Qian & Huang, Runzhou, 2023. "Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance," Energy, Elsevier, vol. 274(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32133-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.