IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19422-4.html
   My bibliography  Save this article

Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design

Author

Listed:
  • Yuqiong Sun

    (South China Agricultural University
    Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture)

  • Shuting Liu

    (University of Connecticut)

  • Luyi Sun

    (University of Connecticut)

  • Shuangshuang Wu

    (South China Agricultural University)

  • Guangqi Hu

    (South China Agricultural University)

  • Xiaoliang Pang

    (South China Agricultural University
    Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture)

  • Andrew T. Smith

    (University of Connecticut)

  • Chaofan Hu

    (South China Agricultural University
    Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture)

  • Songshan Zeng

    (University of Connecticut)

  • Weixing Wang

    (South China University of Technology)

  • Yingliang Liu

    (South China Agricultural University
    Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture)

  • Mingtao Zheng

    (South China Agricultural University
    Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture
    University of Connecticut)

Abstract

Room temperature phosphorescence materials have inspired extensive attention owing to their great potential in optical applications. However, it is hard to achieve a room temperature phosphorescence material with simultaneous long lifetime and high phosphorescence quantum efficiency. Herein, multi-confined carbon dots were designed and fabricated, enabling room temperature phosphorescence material with simultaneous ultralong lifetime, high phosphorescence quantum efficiency, and excellent stability. The multi-confinement by a highly rigid network, stable covalent bonding, and 3D spatial restriction efficiently rigidified the triplet excited states of carbon dots from non-radiative deactivation. The as-designed multi-confined carbon dots exhibit ultralong lifetime of 5.72 s, phosphorescence quantum efficiency of 26.36%, and exceptional stability against strong oxidants, acids and bases, as well as polar solvents. This work provides design principles and a universal strategy to construct metal-free room temperature phosphorescence materials with ultralong lifetime, high phosphorescence quantum efficiency, and high stability for promising applications, especially under harsh conditions.

Suggested Citation

  • Yuqiong Sun & Shuting Liu & Luyi Sun & Shuangshuang Wu & Guangqi Hu & Xiaoliang Pang & Andrew T. Smith & Chaofan Hu & Songshan Zeng & Weixing Wang & Yingliang Liu & Mingtao Zheng, 2020. "Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19422-4
    DOI: 10.1038/s41467-020-19422-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19422-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19422-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Chen & Mengfen Che & Weidong Xu & Zhongbin Wu & Yung Doug Suh & Suli Wu & Xiaowang Liu & Wei Huang, 2024. "Matrix-induced defects and molecular doping in the afterglow of SiO2 microparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Yingxiang Zhai & Shujun Li & Jian Li & Shouxin Liu & Tony D. James & Jonathan L. Sessler & Zhijun Chen, 2023. "Room temperature phosphorescence from natural wood activated by external chloride anion treatment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Wang, Xiaohui & Xu, Li & Ge, Shengbo & Foong, Shin Ying & Liew, Rock Keey & Fong Chong, William Woei & Verma, Meenakshi & Naushad, Mu. & Park, Young-Kwon & Lam, Su Shiung & Li, Qian & Huang, Runzhou, 2023. "Biomass-based carbon quantum dots for polycrystalline silicon solar cells with enhanced photovoltaic performance," Energy, Elsevier, vol. 274(C).
    5. Bijiang Geng & Jinyan Hu & Yuan Li & Shini Feng & Dengyu Pan & Lingyan Feng & Longxiang Shen, 2022. "Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19422-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.