IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14792-1.html
   My bibliography  Save this article

Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer

Author

Listed:
  • Long Gu

    (Nanyang Technological University)

  • Hongwei Wu

    (Nanyang Technological University)

  • Huili Ma

    (Nanjing Tech University)

  • Wenpeng Ye

    (Nanjing Tech University)

  • Wenyong Jia

    (Nanjing Tech University)

  • He Wang

    (Nanjing Tech University)

  • Hongzhong Chen

    (Nanyang Technological University)

  • Nan Zhang

    (Nanyang Technological University)

  • Dongdong Wang

    (Nanyang Technological University)

  • Cheng Qian

    (Nanyang Technological University)

  • Zhongfu An

    (Nanjing Tech University)

  • Wei Huang

    (Nanjing Tech University
    Northwestern Polytechnical University)

  • Yanli Zhao

    (Nanyang Technological University)

Abstract

Functional materials displaying tunable emission and long-lived luminescence have recently emerged as a powerful tool for applications in information encryption, organic electronics and bioelectronics. Herein, we present a design strategy to achieve color-tunable ultralong organic room temperature phosphorescence (UOP) in polymers through radical multicomponent cross-linked copolymerization. Our experiments reveal that by changing the excitation wavelength from 254 to 370 nm, these polymers display multicolor luminescence spanning from blue to yellow with a long-lived lifetime of 1.2 s and a maximum phosphorescence quantum yield of 37.5% under ambient conditions. Moreover, we explore the application of these polymers in multilevel information encryption based on the color-tunable UOP property. This strategy paves the way for the development of multicolor bio-labels and smart luminescent materials with long-lived emission at room temperature.

Suggested Citation

  • Long Gu & Hongwei Wu & Huili Ma & Wenpeng Ye & Wenyong Jia & He Wang & Hongzhong Chen & Nan Zhang & Dongdong Wang & Cheng Qian & Zhongfu An & Wei Huang & Yanli Zhao, 2020. "Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14792-1
    DOI: 10.1038/s41467-020-14792-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14792-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14792-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mengnan Cao & Yiran Ren & Yue Wu & Jingjie Shen & Shujun Li & Zhen-Qiang Yu & Shouxin Liu & Jian Li & Orlando J. Rojas & Zhijun Chen, 2024. "Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Mingjian Zeng & Weiguang Wang & Shuman Zhang & Zhisheng Gao & Yingmeng Yan & Yitong Liu & Yulong Qi & Xin Yan & Wei Zhao & Xin Zhang & Ningning Guo & Huanhuan Li & Hui Li & Gaozhan Xie & Ye Tao & Runf, 2024. "Enabling robust blue circularly polarized organic afterglow through self-confining isolated chiral chromophore," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Qian Wang & Biyan Lin & Meng Chen & Chengxi Zhao & He Tian & Da-Hui Qu, 2022. "A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14792-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.