IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47479-y.html
   My bibliography  Save this article

All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting

Author

Listed:
  • Kun Wang

    (Zhejiang University)

  • Jianwei Shi

    (National Center for Nanoscience and Technology
    Chinese Academy of Sciences)

  • Wenxuan Lai

    (Zhejiang University)

  • Qiang He

    (Zhejiang University)

  • Jun Xu

    (Nanjing University
    Nantong University)

  • Zhenyi Ni

    (Zhejiang University)

  • Xinfeng Liu

    (National Center for Nanoscience and Technology)

  • Xiaodong Pi

    (Zhejiang University
    Zhejiang University)

  • Deren Yang

    (Zhejiang University
    Zhejiang University)

Abstract

Integrated circuit anti-counterfeiting based on optical physical unclonable functions (PUFs) plays a crucial role in guaranteeing secure identification and authentication for Internet of Things (IoT) devices. While considerable efforts have been devoted to exploring optical PUFs, two critical challenges remain: incompatibility with the complementary metal-oxide-semiconductor (CMOS) technology and limited information entropy. Here, we demonstrate all-silicon multidimensionally-encoded optical PUFs fabricated by integrating silicon (Si) metasurface and erbium-doped Si quantum dots (Er-Si QDs) with a CMOS-compatible procedure. Five in-situ optical responses have been manifested within a single pixel, rendering an ultrahigh information entropy of 2.32 bits/pixel. The position-dependent optical responses originate from the position-dependent radiation field and Purcell effect. Our evaluation highlights their potential in IoT security through advanced metrics like bit uniformity, similarity, intra- and inter-Hamming distance, false-acceptance and rejection rates, and encoding capacity. We finally demonstrate the implementation of efficient lightweight mutual authentication protocols for IoT applications by using the all-Si multidimensionally-encoded optical PUFs.

Suggested Citation

  • Kun Wang & Jianwei Shi & Wenxuan Lai & Qiang He & Jun Xu & Zhenyi Ni & Xinfeng Liu & Xiaodong Pi & Deren Yang, 2024. "All-silicon multidimensionally-encoded optical physical unclonable functions for integrated circuit anti-counterfeiting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47479-y
    DOI: 10.1038/s41467-024-47479-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47479-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47479-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuqing Gu & Chang He & Yuqing Zhang & Li Lin & Benjamin David Thackray & Jian Ye, 2020. "Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Sergii Yakunin & Jana Chaaban & Bogdan M. Benin & Ihor Cherniukh & Caterina Bernasconi & Annelies Landuyt & Yevhen Shynkarenko & Sami Bolat & Christoph Hofer & Yaroslav E. Romanyuk & Stefano Cattaneo , 2021. "Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Jung Woo Leem & Min Seok Kim & Seung Ho Choi & Seong-Ryul Kim & Seong-Wan Kim & Young Min Song & Robert J. Young & Young L. Kim, 2020. "Edible unclonable functions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Min Seok Kim & Gil Ju Lee & Jung Woo Leem & Seungho Choi & Young L. Kim & Young Min Song, 2022. "Revisiting silk: a lens-free optical physical unclonable function," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Pavel Cheben & Robert Halir & Jens H. Schmid & Harry A. Atwater & David R. Smith, 2018. "Subwavelength integrated photonics," Nature, Nature, vol. 560(7720), pages 565-572, August.
    6. Tongtong Zhang & Lingzhi Wang & Jing Wang & Zhongqiang Wang & Madhav Gupta & Xuyun Guo & Ye Zhu & Yau Chuen Yiu & Tony K. C. Hui & Yan Zhou & Can Li & Dangyuan Lei & Kwai Hei Li & Xinqiang Wang & Qi W, 2023. "Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junfang Zhang & Rong Tan & Yuxin Liu & Matteo Albino & Weinan Zhang & Molly M. Stevens & Felix F. Loeffler, 2024. "Printed smart devices for anti-counterfeiting allowing precise identification with household equipment," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ningfei Sun & Ziyu Chen & Yanke Wang & Shu Wang & Yong Xie & Qian Liu, 2023. "Random fractal-enabled physical unclonable functions with dynamic AI authentication," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Srinivas Gandla & Jinsik Yoon & Cheol‑Woong Yang & HyungJune Lee & Wook Park & Sunkook Kim, 2024. "Random laser ablated tags for anticounterfeiting purposes and towards physically unclonable functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Tongtong Zhang & Lingzhi Wang & Jing Wang & Zhongqiang Wang & Madhav Gupta & Xuyun Guo & Ye Zhu & Yau Chuen Yiu & Tony K. C. Hui & Yan Zhou & Can Li & Dangyuan Lei & Kwai Hei Li & Xinqiang Wang & Qi W, 2023. "Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yiqian Tang & Yiyu Cai & Kunpeng Dou & Jianqing Chang & Wei Li & Shanshan Wang & Mingzi Sun & Bolong Huang & Xiaofeng Liu & Jianrong Qiu & Lei Zhou & Mingmei Wu & Jun-Cheng Zhang, 2024. "Dynamic multicolor emissions of multimodal phosphors by Mn2+ trace doping in self-activated CaGa4O7," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xiang-Dong Chen & En-Hui Wang & Long-Kun Shan & Ce Feng & Yu Zheng & Yang Dong & Guang-Can Guo & Fang-Wen Sun, 2021. "Focusing the electromagnetic field to 10−6λ for ultra-high enhancement of field-matter interaction," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Pengwei Xiao & Zhoufan Zhang & Junjun Ge & Yalei Deng & Xufeng Chen & Jian-Rong Zhang & Zhengtao Deng & Yu Kambe & Dmitri V. Talapin & Yuanyuan Wang, 2023. "Surface passivation of intensely luminescent all-inorganic nanocrystals and their direct optical patterning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Rana Asgari Sabet & Aqiq Ishraq & Alperen Saltik & Mehmet Bütün & Onur Tokel, 2024. "Laser nanofabrication inside silicon with spatial beam modulation and anisotropic seeding," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Jacob I. Deneff & Lauren E. S. Rohwer & Kimberly S. Butler & Bryan Kaehr & Dayton J. Vogel & Ting S. Luk & Raphael A. Reyes & Alvaro A. Cruz-Cabrera & James E. Martin & Dorina F. Sava Gallis, 2023. "Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Anne M. Luescher & Andreas L. Gimpel & Wendelin J. Stark & Reinhard Heckel & Robert N. Grass, 2024. "Chemical unclonable functions based on operable random DNA pools," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Yanze Feng & Runkun Chen & Junbo He & Liujian Qi & Yanan Zhang & Tian Sun & Xudan Zhu & Weiming Liu & Weiliang Ma & Wanfu Shen & Chunguang Hu & Xiaojuan Sun & Dabing Li & Rongjun Zhang & Peining Li & , 2023. "Visible to mid-infrared giant in-plane optical anisotropy in ternary van der Waals crystals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47479-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.