IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49654-7.html
   My bibliography  Save this article

Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites

Author

Listed:
  • Tianhong Chen

    (Beijing Normal University)

  • Dongpeng Yan

    (Beijing Normal University)

Abstract

Long persistent luminescence (LPL) has gained considerable attention for the applications in decoration, emergency signage, information encryption and biomedicine. However, recently developed LPL materials – encompassing inorganics, organics and inorganic-organic hybrids – often display monochromatic afterglow with limited functionality. Furthermore, triplet exciton-based phosphors are prone to thermal quenching, significantly restricting their high emission efficiency. Here, we show a straightforward wet-chemistry approach for fabricating multimode LPL materials by introducing both anion (Br−) and cation (Sn2+) doping into hexagonal CsCdCl3 all-inorganic perovskites. This process involves establishing new trapping centers from [CdCl6-nBrn]4− and/or [Sn2-nCdnCl9]5− linker units, disrupting the local symmetry in the host framework. These halide perovskites demonstrate afterglow duration time ( > 2,000 s), nearly full-color coverage, high photoluminescence quantum yield ( ~ 84.47%), and the anti-thermal quenching temperature up to 377 K. Particularly, CsCdCl3:x%Br display temperature-dependent LPL and time-valve controllable time-dependent luminescence, while CsCdCl3:x%Sn exhibit forward and reverse excitation-dependent Janus-type luminescence. Combining both experimental and computational studies, this finding not only introduces a local-symmetry breaking strategy for simultaneously enhancing afterglow lifetime and efficiency, but also provides new insights into the multimode LPL materials with dynamic tunability for applications in luminescence, photonics, high-security anti-counterfeiting and information storage.

Suggested Citation

  • Tianhong Chen & Dongpeng Yan, 2024. "Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49654-7
    DOI: 10.1038/s41467-024-49654-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49654-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49654-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryota Kabe & Chihaya Adachi, 2017. "Organic long persistent luminescence," Nature, Nature, vol. 550(7676), pages 384-387, October.
    2. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Shuya Liu & Xiaoyu Fang & Bo Lu & Dongpeng Yan, 2020. "Wide range zero-thermal-quenching ultralong phosphorescence from zero-dimensional metal halide hybrids," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Tianju Zhang & Chaocheng Zhou & Xuezhen Feng & Ningning Dong & Hong Chen & Xianfeng Chen & Long Zhang & Jia Lin & Jun Wang, 2022. "Regulation of the luminescence mechanism of two-dimensional tin halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xiangyu Ou & Xian Qin & Bolong Huang & Jie Zan & Qinxia Wu & Zhongzhu Hong & Lili Xie & Hongyu Bian & Zhigao Yi & Xiaofeng Chen & Yiming Wu & Xiaorong Song & Juan Li & Qiushui Chen & Huanghao Yang & X, 2021. "High-resolution X-ray luminescence extension imaging," Nature, Nature, vol. 590(7846), pages 410-415, February.
    6. Keliang Wan & Bing Tian & Yingxiang Zhai & Yuxuan Liu & He Wang & Shouxin Liu & Shujun Li & Wenpeng Ye & Zhongfu An & Changzhi Li & Jian Li & Tony D. James & Zhijun Chen, 2022. "Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Wei & Mingye Zhu & Tingchen Du & Jangang Li & Peiling Dai & Chenyuan Liu & Jiayu Duan & Shujuan Liu & Xingcheng Zhou & Sudi Zhang & Luo Guo & Hao Wang & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Full-color persistent room temperature phosphorescent elastomers with robust optical properties," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Yun-Lan Li & Hai-Ling Wang & Zhong-Hong Zhu & Yu-Feng Wang & Fu-Pei Liang & Hua-Hong Zou, 2024. "Aggregation induced emission dynamic chiral europium(III) complexes with excellent circularly polarized luminescence and smart sensors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Hailei Zhang & Bo Zhang & Chongyang Cai & Kaiming Zhang & Yu Wang & Yuan Wang & Yanmin Yang & Yonggang Wu & Xinwu Ba & Richard Hoogenboom, 2024. "Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Zongliang Xie & Yufeng Xue & Xianhe Zhang & Junru Chen & Zesen Lin & Bin Liu, 2024. "Isostructural doping for organic persistent mechanoluminescence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Xing Wang Liu & Weijun Zhao & Yue Wu & Zhengong Meng & Zikai He & Xin Qi & Yiran Ren & Zhen-Qiang Yu & Ben Zhong Tang, 2022. "Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Da Liu & Yichu Zheng & Xin Yuan Sui & Xue Feng Wu & Can Zou & Yu Peng & Xinyi Liu & Miaoyu Lin & Zhanpeng Wei & Hang Zhou & Ye-Feng Yao & Sheng Dai & Haiyang Yuan & Hua Gui Yang & Shuang Yang & Yu Hou, 2024. "Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Hongda Guo & Mengnan Cao & Ruixia Liu & Bing Tian & Shouxin Liu & Jian Li & Shujun Li & Bernd Strehmel & Tony D. James & Zhijun Chen, 2024. "Photocured room temperature phosphorescent materials from lignosulfonate," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Lulin Xu & Yuhang Mo & Ning Su & Changshen Shi & Ning Sun & Yuewei Zhang & Lian Duan & Zheng-Hong Lu & Junqiao Ding, 2023. "D-O-A based organic phosphors for both aggregation-induced electrophosphorescence and host-free sensitization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Jinsheng Liao & Minghua Wang & Fulin Lin & Zhuo Han & Biao Fu & Datao Tu & Xueyuan Chen & Bao Qiu & He-Rui Wen, 2022. "Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Lei Lei & Minghao Yi & Yubin Wang & Youjie Hua & Junjie Zhang & Paras N. Prasad & Shiqing Xu, 2024. "Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Nan Zhang & Lei Qu & Shuheng Dai & Guohua Xie & Chunmiao Han & Jing Zhang & Ran Huo & Huan Hu & Qiushui Chen & Wei Huang & Hui Xu, 2023. "Intramolecular charge transfer enables highly-efficient X-ray luminescence in cluster scintillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Guangxin Yang & Subin Hao & Xin Deng & Xinluo Song & Bo Sun & Woo Jin Hyun & Ming-De Li & Li Dang, 2024. "Efficient intersystem crossing and tunable ultralong organic room-temperature phosphorescence via doping polyvinylpyrrolidone with polyaromatic hydrocarbons," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Biao Chen & Wenhuan Huang & Guoqing Zhang, 2023. "Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xiao Wang & Wenjing Sun & Huifang Shi & Huili Ma & Guowei Niu & Yuxin Li & Jiahuan Zhi & Xiaokang Yao & Zhicheng Song & Lei Chen & Shi Li & Guohui Yang & Zixing Zhou & Yixiao He & Shuli Qu & Min Wu & , 2022. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Xinquan Zhou & Lixin Ning & Jianwei Qiao & Yifei Zhao & Puxian Xiong & Zhiguo Xia, 2022. "Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49654-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.