IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40451-2.html
   My bibliography  Save this article

Design of mechanical-robust phosphorescence materials through covalent click reaction

Author

Listed:
  • Rui Tian

    (Beijing University of Chemical Technology, North)

  • Shuo Gao

    (Beijing University of Chemical Technology, North)

  • Kaitao Li

    (Beijing University of Chemical Technology, North)

  • Chao Lu

    (Beijing University of Chemical Technology, North
    Zhengzhou University)

Abstract

It remains a great challenge to engineer materials with strong and stable interactions for the simultaneously mechanical-robust and room temperature phosphorescence-efficient materials. In this work, we demonstrate a covalent cross-linking strategy to engineer mechanical-robust room temperature phosphorescence materials through the B–O click reaction between chromophores, polyvinyl alcohol matrix and inorganic layered double hydroxide nanosheets. Through the covalent cross-linkage between the organic polyvinyl alcohol and inorganic layered double hydroxide, a polymeric composite with ultralong lifetime up to 1.45 s is acquired based on the inhibited non-radiative transition of chromophores. Simultaneously, decent mechanical strength of 97.9 MPa can be realized for the composite materials due to the dissipated loading stress through the covalent-bond-accommodated interfacial interaction. These cross-linked composites also exhibit flexibility, processability, scalability and phosphorescence responses towards the mechanical deformation. It is anticipated that the proposed covalent click reaction could provide a platform for the design and modulation of composites with multi-functionality and long-term durability.

Suggested Citation

  • Rui Tian & Shuo Gao & Kaitao Li & Chao Lu, 2023. "Design of mechanical-robust phosphorescence materials through covalent click reaction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40451-2
    DOI: 10.1038/s41467-023-40451-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40451-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40451-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Yushra Thanzeel & Kaluvu Balaraman & Christian Wolf, 2018. "Click chemistry enables quantitative chiroptical sensing of chiral compounds in protic media and complex mixtures," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. An-Di Guo & Dan Wei & Hui-Jun Nie & Hao Hu & Chengyuan Peng & Shao-Tong Li & Ke-Nian Yan & Bin-Shan Zhou & Lei Feng & Chao Fang & Minjia Tan & Ruimin Huang & Xiao-Hua Chen, 2020. "Light-induced primary amines and o-nitrobenzyl alcohols cyclization as a versatile photoclick reaction for modular conjugation," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    3. Yuncong Liu & Tao Chen & Zhekai Jin & Mengxue Li & Dongdong Zhang & Lian Duan & Zhiguo Zhao & Chao Wang, 2022. "Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Dongdong Wu & Nairiti Sinha & Jeeyoung Lee & Bryan P. Sutherland & Nicole I. Halaszynski & Yu Tian & Jeffrey Caplan & Huixi Violet Zhang & Jeffery G. Saven & Christopher J. Kloxin & Darrin J. Pochan, 2019. "Polymers with controlled assembly and rigidity made with click-functional peptide bundles," Nature, Nature, vol. 574(7780), pages 658-662, October.
    5. Qigang Wang & Justin L. Mynar & Masaru Yoshida & Eunji Lee & Myongsoo Lee & Kou Okuro & Kazushi Kinbara & Takuzo Aida, 2010. "High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder," Nature, Nature, vol. 463(7279), pages 339-343, January.
    6. Yongfeng Zhang & Liang Gao & Xian Zheng & Zhonghao Wang & Chaolong Yang & Hailong Tang & Lunjun Qu & Youbing Li & Yanli Zhao, 2021. "Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Dan Li & Yujie Yang & Jie Yang & Manman Fang & Ben Zhong Tang & Zhen Li, 2022. "Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danman Guo & Wen Wang & Kaimin Zhang & Jinzheng Chen & Yuyuan Wang & Tianyi Wang & Wangmeng Hou & Zhen Zhang & Huahua Huang & Zhenguo Chi & Zhiyong Yang, 2024. "Visible-light-excited robust room-temperature phosphorescence of dimeric single-component luminophores in the amorphous state," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guang Lu & Jing Tan & Hongxiang Wang & Yi Man & Shuo Chen & Jing Zhang & Chunbo Duan & Chunmiao Han & Hui Xu, 2024. "Delayed room temperature phosphorescence enabled by phosphines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Xiao Zhang & Mingjian Zeng & Yewen Zhang & Chenyu Zhang & Zhisheng Gao & Fei He & Xudong Xue & Huanhuan Li & Ping Li & Gaozhan Xie & Hui Li & Xin Zhang & Ningning Guo & He Cheng & Ansheng Luo & Wei Zh, 2023. "Multicolor hyperafterglow from isolated fluorescence chromophores," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Juan Wei & Chenyuan Liu & Jiayu Duan & Aiwen Shao & Jinlu Li & Jiangang Li & Wenjie Gu & Zixian Li & Shujuan Liu & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Xue Chen & Mengfen Che & Weidong Xu & Zhongbin Wu & Yung Doug Suh & Suli Wu & Xiaowang Liu & Wei Huang, 2024. "Matrix-induced defects and molecular doping in the afterglow of SiO2 microparticles," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Liang Gao & Jiayue Huang & Lunjun Qu & Xiaohong Chen & Ying Zhu & Chen Li & Quanchi Tian & Yanli Zhao & Chaolong Yang, 2023. "Stepwise taming of triplet excitons via multiple confinements in intrinsic polymers for long-lived room-temperature phosphorescence," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Juan Wei & Mingye Zhu & Tingchen Du & Jangang Li & Peiling Dai & Chenyuan Liu & Jiayu Duan & Shujuan Liu & Xingcheng Zhou & Sudi Zhang & Luo Guo & Hao Wang & Yun Ma & Wei Huang & Qiang Zhao, 2023. "Full-color persistent room temperature phosphorescent elastomers with robust optical properties," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Kaijun Chen & Yongfeng Zhang & Yunxiang Lei & Wenbo Dai & Miaochang Liu & Zhengxu Cai & Huayue Wu & Xiaobo Huang & Xiang Ma, 2024. "Twofold rigidity activates ultralong organic high-temperature phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Daniel Mark Shapiro & Gunasheil Mandava & Sibel Ebru Yalcin & Pol Arranz-Gibert & Peter J. Dahl & Catharine Shipps & Yangqi Gu & Vishok Srikanth & Aldo I. Salazar-Morales & J. Patrick O’Brien & Koen V, 2022. "Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Qingao Chen & Lunjun Qu & Hui Hou & Jiayue Huang & Chen Li & Ying Zhu & Yongkang Wang & Xiaohong Chen & Qian Zhou & Yan Yang & Chaolong Yang, 2024. "Long lifetimes white afterglow in slightly crosslinked polymer systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Dian-Xue Ma & Zhong-Qiu Li & Kun Tang & Zhong-Liang Gong & Jiang-Yang Shao & Yu-Wu Zhong, 2024. "Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Hao Hu & Wei Hu & An-Di Guo & Linhui Zhai & Song Ma & Hui-Jun Nie & Bin-Shan Zhou & Tianxian Liu & Xinglong Jia & Xing Liu & Xuebiao Yao & Minjia Tan & Xiao-Hua Chen, 2024. "Spatiotemporal and direct capturing global substrates of lysine-modifying enzymes in living cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Xiaoyu Chen & Renlong Zhu & Baicheng Zhang & Xiaolong Zhang & Aoyuan Cheng & Hongping Liu & Ruiying Gao & Xuepeng Zhang & Biao Chen & Shuji Ye & Jun Jiang & Guoqing Zhang, 2024. "Rapid room-temperature phosphorescence chiral recognition of natural amino acids," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xiaolu Zhou & Xue Bai & Fangjian Shang & Heng-Yi Zhang & Li-Hua Wang & Xiufang Xu & Yu Liu, 2024. "Supramolecular assembly activated single-molecule phosphorescence resonance energy transfer for near-infrared targeted cell imaging," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Qing Yang & Xinyi Yang & Yixuan Wang & Yunfan Fei & Fang Li & Haiyan Zheng & Kuo Li & Yibo Han & Takanori Hattori & Pinwen Zhu & Shuaiqiang Zhao & Leiming Fang & Xuyuan Hou & Zhaodong Liu & Bing Yang , 2024. "Brightening triplet excitons enable high-performance white-light emission in organic small molecules via integrating n–π*/π–π* transitions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Zihao Zhao & Yusong Cai & Qiang Zhang & Anze Li & Tianwen Zhu & Xiaohong Chen & Wang Zhang Yuan, 2024. "Photochromic luminescence of organic crystals arising from subtle molecular rearrangement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Huai Chen & Mingyang Wei & Yantao He & Jehad Abed & Sam Teale & Edward H. Sargent & Zhenyu Yang, 2022. "Germanium silicon oxide achieves multi-coloured ultra-long phosphorescence and delayed fluorescence at high temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Zhengyang Kong & Elvis K. Boahen & Dong Jun Kim & Fenglong Li & Joo Sung Kim & Hyukmin Kweon & So Young Kim & Hanbin Choi & Jin Zhu & Wu Ying & Do Hwan Kim, 2024. "Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Wenwen Feng & Lin Sun & Zhekai Jin & Lili Chen & Yuncong Liu & Hao Xu & Chao Wang, 2024. "A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Qinglong Jia & Xilong Yan & Bowei Wang & Jiayi Li & Wensheng Xu & Zhuoyao Shen & Changchang Bo & Yang Li & Ligong Chen, 2023. "Construction of room temperature phosphorescent materials with ultralong lifetime by in-situ derivation strategy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Zizhao Huang & Zhenyi He & Bingbing Ding & He Tian & Xiang Ma, 2022. "Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40451-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.