IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48418-7.html
   My bibliography  Save this article

The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B

Author

Listed:
  • Wenqi Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Qianhua Dong

    (New York University)

  • Xueqing Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jinxin Gao

    (New York University)

  • Xianwen Ye

    (University of Chinese Academy of Sciences
    100 Haike Road)

  • Chunyi Hu

    (National University of Singapore)

  • Fei Li

    (New York University)

  • Yong Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    100 Haike Road)

Abstract

Heterochromatin is generally associated with the nuclear periphery, but how the spatial organization of heterochromatin is regulated to ensure epigenetic silencing remains unclear. Here we found that Sad1, an inner nuclear membrane SUN-family protein in fission yeast, interacts with histone H2A-H2B but not H3-H4. We solved the crystal structure of the histone binding motif (HBM) of Sad1 in complex with H2A-H2B, revealing the intimate contacts between Sad1HBM and H2A-H2B. Structure-based mutagenesis studies revealed that the H2A-H2B-binding activity of Sad1 is required for the dynamic distribution of Sad1 throughout the nuclear envelope (NE). The Sad1-H2A-H2B complex mediates tethering telomeres and the mating-type locus to the NE. This complex is also important for heterochromatin silencing. Mechanistically, H2A-H2B enhances the interaction between Sad1 and HDACs, including Clr3 and Sir2, to maintain epigenetic identity of heterochromatin. Interestingly, our results suggest that Sad1 exhibits the histone-enhanced liquid-liquid phase separation property, which helps recruit heterochromatin factors to the NE. Our results uncover an unexpected role of SUN-family proteins in heterochromatin regulation and suggest a nucleosome-independent role of H2A-H2B in regulating Sad1’s functionality.

Suggested Citation

  • Wenqi Sun & Qianhua Dong & Xueqing Li & Jinxin Gao & Xianwen Ye & Chunyi Hu & Fei Li & Yong Chen, 2024. "The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48418-7
    DOI: 10.1038/s41467-024-48418-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48418-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48418-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam G. Larson & Daniel Elnatan & Madeline M. Keenen & Michael J. Trnka & Jonathan B. Johnston & Alma L. Burlingame & David A. Agard & Sy Redding & Geeta J. Narlikar, 2017. "Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin," Nature, Nature, vol. 547(7662), pages 236-240, July.
    2. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Amy R. Strom & Alexander V. Emelyanov & Mustafa Mir & Dmitry V. Fyodorov & Xavier Darzacq & Gary H. Karpen, 2017. "Phase separation drives heterochromatin domain formation," Nature, Nature, vol. 547(7662), pages 241-245, July.
    4. George E. Ghanim & Adam J. Fountain & Anne-Marie M. Roon & Ramya Rangan & Rhiju Das & Kathleen Collins & Thi Hoang Duong Nguyen, 2021. "Structure of human telomerase holoenzyme with bound telomeric DNA," Nature, Nature, vol. 593(7859), pages 449-453, May.
    5. Arnaud Obri & Khalid Ouararhni & Christophe Papin & Marie-Laure Diebold & Kiran Padmanabhan & Martin Marek & Isabelle Stoll & Ludovic Roy & Patrick T. Reilly & Tak W. Mak & Stefan Dimitrov & Christoph, 2014. "ANP32E is a histone chaperone that removes H2A.Z from chromatin," Nature, Nature, vol. 505(7485), pages 648-653, January.
    6. S. Sanulli & M. J. Trnka & V. Dharmarajan & R. W. Tibble & B. D. Pascal & A. L. Burlingame & P. R. Griffin & J. D. Gross & G. J. Narlikar, 2019. "HP1 reshapes nucleosome core to promote phase separation of heterochromatin," Nature, Nature, vol. 575(7782), pages 390-394, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanda Ames & Melissa Seman & Ajay Larkin & Gulzhan Raiymbek & Ziyuan Chen & Alex Levashkevich & Bokyung Kim & Julie Suzanne Biteen & Kaushik Ragunathan, 2024. "Epigenetic memory is governed by an effector recruitment specificity toggle in Heterochromatin Protein 1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Ting Peng & Yingping Hou & Haowei Meng & Yong Cao & Xiaotian Wang & Lumeng Jia & Qing Chen & Yang Zheng & Yujie Sun & Hebing Chen & Tingting Li & Cheng Li, 2023. "Mapping nucleolus-associated chromatin interactions using nucleolus Hi-C reveals pattern of heterochromatin interactions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Taehyun Kim & Jaeyoon Yoo & Sungho Do & Dong Soo Hwang & YongKeun Park & Yongdae Shin, 2023. "RNA-mediated demixing transition of low-density condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Catherine Naughton & Covadonga Huidobro & Claudia R. Catacchio & Adam Buckle & Graeme R. Grimes & Ryu-Suke Nozawa & Stefania Purgato & Mariano Rocchi & Nick Gilbert, 2022. "Human centromere repositioning activates transcription and opens chromatin fibre structure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Naohiro Kuwayama & Tomoya Kujirai & Yusuke Kishi & Rina Hirano & Kenta Echigoya & Lingyan Fang & Sugiko Watanabe & Mitsuyoshi Nakao & Yutaka Suzuki & Kei-ichiro Ishiguro & Hitoshi Kurumizaka & Yukiko , 2023. "HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Pan Jia & Xiang Li & Xuelei Wang & Liangjiao Yao & Yingying Xu & Yu Hu & Wenwen Xu & Zhe He & Qifan Zhao & Yicong Deng & Yi Zang & Meiyu Zhang & Yan Zhang & Jun Qin & Wei Lu, 2021. "ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Lidice González & Daniel Kolbin & Christian Trahan & Célia Jeronimo & François Robert & Marlene Oeffinger & Kerry Bloom & Stephen W. Michnick, 2023. "Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Meng Zhang & César Díaz-Celis & Jianfang Liu & Jinhui Tao & Paul D. Ashby & Carlos Bustamante & Gang Ren, 2024. "Angle between DNA linker and nucleosome core particle regulates array compaction revealed by individual-particle cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Clara Lopes Novo & Emily V. Wong & Colin Hockings & Chetan Poudel & Eleanor Sheekey & Meike Wiese & Hanneke Okkenhaug & Simon J. Boulton & Srinjan Basu & Simon Walker & Gabriele S. Kaminski Schierle &, 2022. "Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Xiaowen Lyu & M. Jordan Rowley & Michael J. Kulik & Stephen Dalton & Victor G. Corces, 2023. "Regulation of CTCF loop formation during pancreatic cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    13. Khalil Joron & Juliane Oliveira Viegas & Liam Haas-Neill & Sariel Bier & Paz Drori & Shani Dvir & Patrick Siang Lin Lim & Sarah Rauscher & Eran Meshorer & Eitan Lerner, 2023. "Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Judith H. I. Haarhuis & Robin H. Weide & Vincent A. Blomen & Koen D. Flach & Hans Teunissen & Laureen Willems & Thijn R. Brummelkamp & Benjamin D. Rowland & Elzo Wit, 2022. "A Mediator-cohesin axis controls heterochromatin domain formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Hua Yu & Zhen Sun & Tianyu Tan & Hongru Pan & Jing Zhao & Ling Zhang & Jiayu Chen & Anhua Lei & Yuqing Zhu & Lang Chen & Yuyan Xu & Yaxin Liu & Ming Chen & Jinghao Sheng & Zhengping Xu & Pengxu Qian &, 2021. "rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    16. Akiko Doi & Gianmarco D. Suarez & Rita Droste & H. Robert Horvitz, 2023. "A DEAD-box helicase drives the partitioning of a pro-differentiation NAB protein into nuclear foci," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Guillermo A. Orsi & Maxime M. C. Tortora & Béatrice Horard & Dominique Baas & Jean-Philippe Kleman & Jonas Bucevičius & Gražvydas Lukinavičius & Daniel Jost & Benjamin Loppin, 2023. "Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    19. George E. Ghanim & Zala Sekne & Sebastian Balch & Anne-Marie M. van Roon & Thi Hoang Duong Nguyen, 2024. "2.7 Å cryo-EM structure of human telomerase H/ACA ribonucleoprotein," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48418-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.