IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41633-8.html
   My bibliography  Save this article

Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II

Author

Listed:
  • David Flores-Solis

    (German Center for Neurodegenerative Diseases (DZNE))

  • Irina P. Lushpinskaia

    (German Center for Neurodegenerative Diseases (DZNE))

  • Anton A. Polyansky

    (Max Perutz Labs, Vienna Biocenter Campus (VBC)
    University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology)

  • Arya Changiarath

    (Johannes Gutenberg University Mainz (JGU)
    KOMET1, Institute of Physics, Johannes Gutenberg University Mainz (JGU))

  • Marc Boehning

    (Max Planck Institute for Multidisciplinary Sciences)

  • Milana Mirkovic

    (Max Perutz Labs, Vienna Biocenter Campus (VBC)
    University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology)

  • James Walshe

    (Max Planck Institute for Multidisciplinary Sciences)

  • Lisa M. Pietrek

    (Max Planck Institute of Biophysics)

  • Patrick Cramer

    (Max Planck Institute for Multidisciplinary Sciences)

  • Lukas S. Stelzl

    (Johannes Gutenberg University Mainz (JGU)
    KOMET1, Institute of Physics, Johannes Gutenberg University Mainz (JGU)
    Institute of Molecular Biology (IMB))

  • Bojan Zagrovic

    (Max Perutz Labs, Vienna Biocenter Campus (VBC)
    University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology)

  • Markus Zweckstetter

    (German Center for Neurodegenerative Diseases (DZNE)
    Max Planck Institute for Multidisciplinary Sciences)

Abstract

Eukaryotic gene regulation and pre-mRNA transcription depend on the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II. Due to its highly repetitive, intrinsically disordered sequence, the CTD enables clustering and phase separation of Pol II. The molecular interactions that drive CTD phase separation and Pol II clustering are unclear. Here, we show that multivalent interactions involving tyrosine impart temperature- and concentration-dependent self-coacervation of the CTD. NMR spectroscopy, molecular ensemble calculations and all-atom molecular dynamics simulations demonstrate the presence of diverse tyrosine-engaging interactions, including tyrosine-proline contacts, in condensed states of human CTD and other low-complexity proteins. We further show that the network of multivalent interactions involving tyrosine is responsible for the co-recruitment of the human Mediator complex and CTD during phase separation. Our work advances the understanding of the driving forces of CTD phase separation and thus provides the basis to better understand CTD-mediated Pol II clustering in eukaryotic gene transcription.

Suggested Citation

  • David Flores-Solis & Irina P. Lushpinskaia & Anton A. Polyansky & Arya Changiarath & Marc Boehning & Milana Mirkovic & James Walshe & Lisa M. Pietrek & Patrick Cramer & Lukas S. Stelzl & Bojan Zagrovi, 2023. "Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41633-8
    DOI: 10.1038/s41467-023-41633-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41633-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41633-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lucas Farnung & Seychelle M. Vos & Christoph Wigge & Patrick Cramer, 2017. "Nucleosome–Chd1 structure and implications for chromatin remodelling," Nature, Nature, vol. 550(7677), pages 539-542, October.
    2. Anton Meinhart & Patrick Cramer, 2004. "Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors," Nature, Nature, vol. 430(6996), pages 223-226, July.
    3. Kehui Xiang & Takashi Nagaike & Song Xiang & Turgay Kilic & Maia M. Beh & James L. Manley & Liang Tong, 2010. "Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex," Nature, Nature, vol. 467(7316), pages 729-733, October.
    4. Huasong Lu & Dan Yu & Anders S. Hansen & Sourav Ganguly & Rongdiao Liu & Alec Heckert & Xavier Darzacq & Qiang Zhou, 2018. "Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II," Nature, Nature, vol. 558(7709), pages 318-323, June.
    5. Bede Portz & Feiyue Lu & Eric B. Gibbs & Joshua E. Mayfield & M. Rachel Mehaffey & Yan Jessie Zhang & Jennifer S. Brodbelt & Scott A. Showalter & David S. Gilmour, 2017. "Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    6. Patrick Cramer, 2019. "Organization and regulation of gene transcription," Nature, Nature, vol. 573(7772), pages 45-54, September.
    7. Eric B. Gibbs & Feiyue Lu & Bede Portz & Michael J. Fisher & Brenda P. Medellin & Tatiana N. Laremore & Yan Jessie Zhang & David S. Gilmour & Scott A. Showalter, 2017. "Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    8. Srinivasan Rengachari & Sandra Schilbach & Shintaro Aibara & Christian Dienemann & Patrick Cramer, 2021. "Structure of the human Mediator–RNA polymerase II pre-initiation complex," Nature, Nature, vol. 594(7861), pages 129-133, June.
    9. Yang Eric Guo & John C. Manteiga & Jonathan E. Henninger & Benjamin R. Sabari & Alessandra Dall’Agnese & Nancy M. Hannett & Jan-Hendrik Spille & Lena K. Afeyan & Alicia V. Zamudio & Krishna Shrinivas , 2019. "Pol II phosphorylation regulates a switch between transcriptional and splicing condensates," Nature, Nature, vol. 572(7770), pages 543-548, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richoo B. Davis & Anushka Supakar & Aishwarya Kanchi Ranganath & Mahdi Muhammad Moosa & Priya R. Banerjee, 2024. "Heterotypic interactions can drive selective co-condensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Vicioso-Mantis & Raquel Fueyo & Claudia Navarro & Sara Cruz-Molina & Wilfred F. J. Ijcken & Elena Rebollo & Álvaro Rada-Iglesias & Marian A. Martínez-Balbás, 2022. "JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Lisa-Marie Appel & Vedran Franke & Melania Bruno & Irina Grishkovskaya & Aiste Kasiliauskaite & Tanja Kaufmann & Ursula E. Schoeberl & Martin G. Puchinger & Sebastian Kostrhon & Carmen Ebenwaldner & M, 2021. "PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    3. Hui Wang & Boyuan Li & Linyu Zuo & Bo Wang & Yan Yan & Kai Tian & Rong Zhou & Chenlu Wang & Xizi Chen & Yongpeng Jiang & Haonan Zheng & Fangfei Qin & Bin Zhang & Yang Yu & Chao-Pei Liu & Yanhui Xu & J, 2022. "The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
    4. Baolei Yuan & Xuan Zhou & Keiichiro Suzuki & Gerardo Ramos-Mandujano & Mengge Wang & Muhammad Tehseen & Lorena V. Cortés-Medina & James J. Moresco & Sarah Dunn & Reyna Hernandez-Benitez & Tomoaki Hish, 2022. "Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Hossein Salari & Geneviève Fourel & Daniel Jost, 2024. "Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Hiroaki Ohishi & Seiru Shimada & Satoshi Uchino & Jieru Li & Yuko Sato & Manabu Shintani & Hitoshi Owada & Yasuyuki Ohkawa & Alexandros Pertsinidis & Takashi Yamamoto & Hiroshi Kimura & Hiroshi Ochiai, 2022. "STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Lisa-Marie Appel & Vedran Franke & Johannes Benedum & Irina Grishkovskaya & Xué Strobl & Anton Polyansky & Gregor Ammann & Sebastian Platzer & Andrea Neudolt & Anna Wunder & Lena Walch & Stefanie Kais, 2023. "The SPOC domain is a phosphoserine binding module that bridges transcription machinery with co- and post-transcriptional regulators," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    9. Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Mitsuaki Fujimoto & Ryosuke Takii & Masaki Matsumoto & Mariko Okada & Keiich I. Nakayama & Ryuichiro Nakato & Katsunori Fujiki & Katsuhiko Shirahige & Akira Nakai, 2022. "HSF1 phosphorylation establishes an active chromatin state via the TRRAP–TIP60 complex and promotes tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Robert Düster & Kanchan Anand & Sophie C. Binder & Maximilian Schmitz & Karl Gatterdam & Robert P. Fisher & Matthias Geyer, 2024. "Structural basis of Cdk7 activation by dual T-loop phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Sarah M. Lloyd & Daniel B. Leon & Mari O. Brady & Deborah Rodriguez & Madison P. McReynolds & Junghun Kweon & Amy E. Neely & Laura A. Blumensaadt & Patric J. Ho & Xiaomin Bao, 2022. "CDK9 activity switch associated with AFF1 and HEXIM1 controls differentiation initiation from epidermal progenitors," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Luka Bacic & Guillaume Gaullier & Jugal Mohapatra & Guanzhong Mao & Klaus Brackmann & Mikhail Panfilov & Glen Liszczak & Anton Sabantsev & Sebastian Deindl, 2024. "Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Benjamin M. Spector & Mrutyunjaya Parida & Ming Li & Christopher B. Ball & Jeffery L. Meier & Donal S. Luse & David H. Price, 2022. "Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Zhaowei Yu & Qi Wang & Qichen Zhang & Yawen Tian & Guo Yan & Jidong Zhu & Guangya Zhu & Yong Zhang, 2024. "Decoding the genomic landscape of chromatin-associated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. Weiliang Mo & Junchuan Zhang & Li Zhang & Zhenming Yang & Liang Yang & Nan Yao & Yong Xiao & Tianhong Li & Yaxing Li & Guangmei Zhang & Mingdi Bian & Xinglin Du & Zecheng Zuo, 2022. "Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Ines H. Kaltheuner & Kanchan Anand & Jonas Moecking & Robert Düster & Jinhua Wang & Nathanael S. Gray & Matthias Geyer, 2021. "Abemaciclib is a potent inhibitor of DYRK1A and HIP kinases involved in transcriptional regulation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Yucheng Tian & Yixiao Chen & Sai Wang & Xianfeng Wang & Jianyong Yu & Shichao Zhang & Bin Ding, 2024. "Ultrathin aerogel-structured micro/nanofiber metafabric via dual air-gelation synthesis for self-sustainable heating," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41633-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.