IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53494-w.html
   My bibliography  Save this article

Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates

Author

Listed:
  • Ashish Joshi

    (Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali)

  • Anuja Walimbe

    (Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali)

  • Snehasis Sarkar

    (Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali)

  • Lisha Arora

    (Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali)

  • Gaganpreet Kaur

    (Indian Institute of Science Education and Research (IISER) Mohali)

  • Prince Jhandai

    (Indian Institute of Science Education and Research (IISER) Mohali
    Oklahoma State University)

  • Dhruba Chatterjee

    (Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali)

  • Indranil Banerjee

    (Indian Institute of Science Education and Research (IISER) Mohali)

  • Samrat Mukhopadhyay

    (Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali
    Indian Institute of Science Education and Research (IISER) Mohali)

Abstract

Physical properties of biomolecular condensates formed via phase separation of proteins and nucleic acids are associated with cell physiology and disease. Condensate properties can be regulated by several cellular factors including post-translational modifications. Here, we introduce an application of intermolecular energy migration via homo-FRET (Förster resonance energy transfer), a nanometric proximity ruler, to study the modulation in short- and long-range protein-protein interactions leading to the changes in the physical properties of condensates of fluorescently-tagged FUS (Fused in Sarcoma) that is associated with the formation of cytoplasmic and nuclear membraneless organelles. We show that homoFRET captures modulations in condensate properties of FUS by RNA, ATP, and post-translational arginine methylation. We also extend the homoFRET methodology to study the in-situ formation of cytoplasmic stress granules in mammalian cells. Our studies highlight the broad applicability of homoFRET as a potent generic tool for studying intracellular phase transitions involved in function and disease.

Suggested Citation

  • Ashish Joshi & Anuja Walimbe & Snehasis Sarkar & Lisha Arora & Gaganpreet Kaur & Prince Jhandai & Dhruba Chatterjee & Indranil Banerjee & Samrat Mukhopadhyay, 2024. "Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53494-w
    DOI: 10.1038/s41467-024-53494-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53494-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53494-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miao Yu & Maziar Heidari & Sofya Mikhaleva & Piau Siong Tan & Sara Mingu & Hao Ruan & Christopher D. Reinkemeier & Agnieszka Obarska-Kosinska & Marc Siggel & Martin Beck & Gerhard Hummer & Edward A. L, 2023. "Visualizing the disordered nuclear transport machinery in situ," Nature, Nature, vol. 617(7959), pages 162-169, May.
    2. Michele Vendruscolo & Monika Fuxreiter, 2022. "Protein condensation diseases: therapeutic opportunities," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Chenyang Lan & Juhyeong Kim & Svenja Ulferts & Fernando Aprile-Garcia & Sophie Weyrauch & Abhinaya Anandamurugan & Robert Grosse & Ritwick Sawarkar & Aleks Reinhardt & Thorsten Hugel, 2023. "Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Artem Pliss & Svitlana M. Levchenko & Lixin Liu & Xiao Peng & Tymish Y. Ohulchanskyy & Indrajit Roy & Andrey N. Kuzmin & Junle Qu & Paras N. Prasad, 2019. "Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Ashish Joshi & Anuja Walimbe & Anamika Avni & Sandeep K. Rai & Lisha Arora & Snehasis Sarkar & Samrat Mukhopadhyay, 2023. "Single-molecule FRET unmasks structural subpopulations and crucial molecular events during FUS low-complexity domain phase separation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Khalil Joron & Juliane Oliveira Viegas & Liam Haas-Neill & Sariel Bier & Paz Drori & Shani Dvir & Patrick Siang Lin Lim & Sarah Rauscher & Eran Meshorer & Eitan Lerner, 2023. "Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Agustín Mangiarotti & Macarena Siri & Nicky W. Tam & Ziliang Zhao & Leonel Malacrida & Rumiana Dimova, 2023. "Biomolecular condensates modulate membrane lipid packing and hydration," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Georg Krainer & Timothy J. Welsh & Jerelle A. Joseph & Jorge R. Espinosa & Sina Wittmann & Ella Csilléry & Akshay Sridhar & Zenon Toprakcioglu & Giedre Gudiškytė & Magdalena A. Czekalska & William E. , 2021. "Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. W. Michael Babinchak & Benjamin K. Dumm & Sarah Venus & Solomiia Boyko & Andrea A. Putnam & Eckhard Jankowsky & Witold K. Surewicz, 2020. "Small molecules as potent biphasic modulators of protein liquid-liquid phase separation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    10. Shuying Sun & Shuo-Chien Ling & Jinsong Qiu & Claudio P. Albuquerque & Yu Zhou & Seiya Tokunaga & Hairi Li & Haiyan Qiu & Anh Bui & Gene W. Yeo & Eric J. Huang & Kevin Eggan & Huilin Zhou & Xiang-Dong, 2015. "ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP," Nature Communications, Nature, vol. 6(1), pages 1-14, May.
    11. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Joshi & Anuja Walimbe & Anamika Avni & Sandeep K. Rai & Lisha Arora & Snehasis Sarkar & Samrat Mukhopadhyay, 2023. "Single-molecule FRET unmasks structural subpopulations and crucial molecular events during FUS low-complexity domain phase separation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. William E. Arter & Runzhang Qi & Nadia A. Erkamp & Georg Krainer & Kieran Didi & Timothy J. Welsh & Julia Acker & Jonathan Nixon-Abell & Seema Qamar & Jordina Guillén-Boixet & Titus M. Franzmann & Dav, 2022. "Biomolecular condensate phase diagrams with a combinatorial microdroplet platform," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Hong Zhang & Huazhang Guo & Danni Li & Yiling Zhang & Shengnan Zhang & Wenyan Kang & Cong Liu & Weidong Le & Liang Wang & Dan Li & Bin Dai, 2024. "Halogen doped graphene quantum dots modulate TDP-43 phase separation and aggregation in the nucleus," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Aishwarya Agarwal & Lisha Arora & Sandeep K. Rai & Anamika Avni & Samrat Mukhopadhyay, 2022. "Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Sejun Yang & Yeonwoo Yu & Seonghyeon Jo & Yehee Lee & Seojin Son & Ki Hoon Lee, 2024. "Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Hema M. Swasthi & Joseph L. Basalla & Claire E. Dudley & Anthony G. Vecchiarelli & Matthew R. Chapman, 2023. "Cell surface-localized CsgF condensate is a gatekeeper in bacterial curli subunit secretion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Georg Krainer & Kadi L. Saar & William E. Arter & Timothy J. Welsh & Magdalena A. Czekalska & Raphaël P. B. Jacquat & Quentin Peter & Walther C. Traberg & Arvind Pujari & Akhila K. Jayaram & Pavankuma, 2023. "Direct digital sensing of protein biomarkers in solution," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    9. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Katherine L. Harper & Elena M. Harrington & Connor Hayward & Chinedu A. Anene & Wiyada Wongwiwat & Robert E. White & Adrian Whitehouse, 2024. "Virus-modified paraspeckle-like condensates are hubs for viral RNA processing and their formation drives genomic instability," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    14. Bikash Chandra Swain & Pascale Sarkis & Vanessa Ung & Sabrina Rousseau & Laurent Fernandez & Ani Meltonyan & V. Esperance Aho & Davide Mercadante & Cameron D. Mackereth & Mikayel Aznauryan, 2024. "Disordered regions of human eIF4B orchestrate a dynamic self-association landscape," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. David Q. P. Reis & Sara Pereira & Ana P. Ramos & Pedro M. Pereira & Leonor Morgado & Joana Calvário & Adriano O. Henriques & Mónica Serrano & Ana S. Pina, 2024. "Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Samuel T. Dada & Zenon Toprakcioglu & Mariana P. Cali & Alexander Röntgen & Maarten C. Hardenberg & Owen M. Morris & Lena K. Mrugalla & Tuomas P. J. Knowles & Michele Vendruscolo, 2024. "Pharmacological inhibition of α-synuclein aggregation within liquid condensates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Andres R. Tejedor & Ignacio Sanchez-Burgos & Maria Estevez-Espinosa & Adiran Garaizar & Rosana Collepardo-Guevara & Jorge Ramirez & Jorge R. Espinosa, 2022. "Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Gaurav Chauhan & Mina Farag & Samuel R. Cohen & Rohit V. Pappu, 2024. "Reply to: The conformations of protein chains at the interface of biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-4, December.
    20. Xi Li & Linwei Yu & Xikai Liu & Tianyi Shi & Yu Zhang & Yushuo Xiao & Chen Wang & Liangliang Song & Ning Li & Xinran Liu & Yuchen Chen & Robert B. Petersen & Xiang Cheng & Weikang Xue & Yanxun V. Yu &, 2024. "β-synuclein regulates the phase transitions and amyloid conversion of α-synuclein," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53494-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.