IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54588-1.html
   My bibliography  Save this article

Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress

Author

Listed:
  • Sejun Yang

    (Seoul National University)

  • Yeonwoo Yu

    (Seoul National University)

  • Seonghyeon Jo

    (Seoul National University)

  • Yehee Lee

    (Seoul National University)

  • Seojin Son

    (Seoul National University
    Samsung SDI)

  • Ki Hoon Lee

    (Seoul National University
    Seoul National University)

Abstract

Many studies try to comprehend and replicate the natural silk spinning process due to its energy-efficient and eco-friendly process. In contrast to spider silk, the mechanisms of how silkworm silk fibroin (SF) undergoes liquid–liquid phase separation (LLPS) concerning the various environmental factors in the silk glands or how the SF coacervates transform into fibers remain unexplored. Here, we show that calcium ions, among the most abundant metal ions inside the silk glands, induce LLPS of SF under macromolecular crowded conditions by increasing both hydrophobic and electrostatic interactions between SF. Furthermore, SF coacervates assemble and further develop into fibrils under acidification and shear force. Finally, we prepare SF fiber using a pultrusion-based dry spinning, mirroring the natural silk spinning system. Unlike previous artificial spinning methods requiring concentrated solutions or harsh solvents, our process uses a less concentrated aqueous SF solution and minimal shear force, offering a biomimetic approach to fiber production.

Suggested Citation

  • Sejun Yang & Yeonwoo Yu & Seonghyeon Jo & Yehee Lee & Seojin Son & Ki Hoon Lee, 2024. "Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54588-1
    DOI: 10.1038/s41467-024-54588-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54588-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54588-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Minchul Kang & Manuel Andreani & Anne K Kenworthy, 2015. "Validation of Normalizations, Scaling, and Photofading Corrections for FRAP Data Analysis," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-28, May.
    2. Hyoung-Joon Jin & David L. Kaplan, 2003. "Mechanism of silk processing in insects and spiders," Nature, Nature, vol. 424(6952), pages 1057-1061, August.
    3. Yongmei Zheng & Hao Bai & Zhongbing Huang & Xuelin Tian & Fu-Qiang Nie & Yong Zhao & Jin Zhai & Lei Jiang, 2010. "Directional water collection on wetted spider silk," Nature, Nature, vol. 463(7281), pages 640-643, February.
    4. Fritz Vollrath & David P. Knight, 2001. "Liquid crystalline spinning of spider silk," Nature, Nature, vol. 410(6828), pages 541-548, March.
    5. James Sparkes & Chris Holland, 2017. "Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    6. Quan Wan & Mei Yang & Jiaqi Hu & Fang Lei & Yajun Shuai & Jie Wang & Chris Holland & Cornelia Rodenburg & Mingying Yang, 2021. "Mesoscale structure development reveals when a silkworm silk is spun," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. D. Eliaz & S. Paul & D. Benyamin & A. Cernescu & S. R. Cohen & I. Rosenhek-Goldian & O. Brookstein & M. E. Miali & A. Solomonov & M. Greenblatt & Y. Levy & U. Raviv & A. Barth & U. Shimanovich, 2022. "Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Georg Krainer & Timothy J. Welsh & Jerelle A. Joseph & Jorge R. Espinosa & Sina Wittmann & Ella Csilléry & Akshay Sridhar & Zenon Toprakcioglu & Giedre Gudiškytė & Magdalena A. Czekalska & William E. , 2021. "Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Eliaz & S. Paul & D. Benyamin & A. Cernescu & S. R. Cohen & I. Rosenhek-Goldian & O. Brookstein & M. E. Miali & A. Solomonov & M. Greenblatt & Y. Levy & U. Raviv & A. Barth & U. Shimanovich, 2022. "Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Jianming Chen & Arata Tsuchida & Ali D. Malay & Kousuke Tsuchiya & Hiroyasu Masunaga & Yui Tsuji & Mako Kuzumoto & Kenji Urayama & Hirofumi Shintaku & Keiji Numata, 2024. "Replicating shear-mediated self-assembly of spider silk through microfluidics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Chenchen Wu & Yu Duan & Lintao Yu & Yao Hu & Chenxi Zhao & Chunwang Ji & Xiangdong Guo & Shu Zhang & Xiaokang Dai & Puyi Ma & Qian Wang & Shengjie Ling & Xiaoxia Yang & Qing Dai, 2024. "In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Ori Brookstein & Eyal Shimoni & Dror Eliaz & Ifat Kaplan-Ashiri & Itay Carmel & Ulyana Shimanovich, 2024. "Metal ions guide the production of silkworm silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Wenbo Hu & Anqiang Jia & Sanyuan Ma & Guoqing Zhang & Zhaoyuan Wei & Fang Lu & Yongjiang Luo & Zhisheng Zhang & Jiahe Sun & Tianfang Yang & TingTing Xia & Qinhui Li & Ting Yao & Jiangyu Zheng & Zijie , 2023. "A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    7. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Hema M. Swasthi & Joseph L. Basalla & Claire E. Dudley & Anthony G. Vecchiarelli & Matthew R. Chapman, 2023. "Cell surface-localized CsgF condensate is a gatekeeper in bacterial curli subunit secretion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Georg Krainer & Kadi L. Saar & William E. Arter & Timothy J. Welsh & Magdalena A. Czekalska & Raphaël P. B. Jacquat & Quentin Peter & Walther C. Traberg & Arvind Pujari & Akhila K. Jayaram & Pavankuma, 2023. "Direct digital sensing of protein biomarkers in solution," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Avigail Baruch Leshem & Sian Sloan-Dennison & Tlalit Massarano & Shavit Ben-David & Duncan Graham & Karen Faulds & Hugo E. Gottlieb & Jordan H. Chill & Ayala Lampel, 2023. "Biomolecular condensates formed by designer minimalistic peptides," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    13. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Ke Wang & Qian Ma & Xiao Qin & Shu Dong Wang, 2018. "Silk Fibroin and its Application in Tissue Engineering," Current Trends in Fashion Technology & Textile Engineering, Juniper Publishers Inc., vol. 4(4), pages 74-76, November.
    15. Ashish Joshi & Anuja Walimbe & Snehasis Sarkar & Lisha Arora & Gaganpreet Kaur & Prince Jhandai & Dhruba Chatterjee & Indranil Banerjee & Samrat Mukhopadhyay, 2024. "Intermolecular energy migration via homoFRET captures the modulation in the material property of phase-separated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. David Q. P. Reis & Sara Pereira & Ana P. Ramos & Pedro M. Pereira & Leonor Morgado & Joana Calvário & Adriano O. Henriques & Mónica Serrano & Ana S. Pina, 2024. "Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Andres R. Tejedor & Ignacio Sanchez-Burgos & Maria Estevez-Espinosa & Adiran Garaizar & Rosana Collepardo-Guevara & Jorge Ramirez & Jorge R. Espinosa, 2022. "Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Tomas Sneideris & Nadia A. Erkamp & Hannes Ausserwöger & Kadi L. Saar & Timothy J. Welsh & Daoyuan Qian & Kai Katsuya-Gaviria & Margaret L. L. Y. Johncock & Georg Krainer & Alexander Borodavka & Tuoma, 2023. "Targeting nucleic acid phase transitions as a mechanism of action for antimicrobial peptides," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54588-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.