STREAMING-tag system reveals spatiotemporal relationships between transcriptional regulatory factors and transcriptional activity
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-35286-2
Download full text from publisher
References listed on IDEAS
- Jonathan Liu & Donald Hansen & Elizabeth Eck & Yang Joon Kim & Meghan Turner & Simon Alamos & Hernan Garcia, 2021. "Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-26, May.
- Linda S. Forero-Quintero & William Raymond & Tetsuya Handa & Matthew N. Saxton & Tatsuya Morisaki & Hiroshi Kimura & Edouard Bertrand & Brian Munsky & Timothy J. Stasevich, 2021. "Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Patrick Cramer, 2019. "Organization and regulation of gene transcription," Nature, Nature, vol. 573(7772), pages 45-54, September.
- Timothy J. Stasevich & Yoko Hayashi-Takanaka & Yuko Sato & Kazumitsu Maehara & Yasuyuki Ohkawa & Kumiko Sakata-Sogawa & Makio Tokunaga & Takahiro Nagase & Naohito Nozaki & James G. McNally & Hiroshi K, 2014. "Regulation of RNA polymerase II activation by histone acetylation in single living cells," Nature, Nature, vol. 516(7530), pages 272-275, December.
- Yang Eric Guo & John C. Manteiga & Jonathan E. Henninger & Benjamin R. Sabari & Alessandra Dall’Agnese & Nancy M. Hannett & Jan-Hendrik Spille & Lena K. Afeyan & Alicia V. Zamudio & Krishna Shrinivas , 2019. "Pol II phosphorylation regulates a switch between transcriptional and splicing condensates," Nature, Nature, vol. 572(7770), pages 543-548, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Timothy A. Daugird & Yu Shi & Katie L. Holland & Hosein Rostamian & Zhe Liu & Luke D. Lavis & Joseph Rodriguez & Brian D. Strahl & Wesley R. Legant, 2024. "Correlative single molecule lattice light sheet imaging reveals the dynamic relationship between nucleosomes and the local chromatin environment," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baolei Yuan & Xuan Zhou & Keiichiro Suzuki & Gerardo Ramos-Mandujano & Mengge Wang & Muhammad Tehseen & Lorena V. Cortés-Medina & James J. Moresco & Sarah Dunn & Reyna Hernandez-Benitez & Tomoaki Hish, 2022. "Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
- Marta Vicioso-Mantis & Raquel Fueyo & Claudia Navarro & Sara Cruz-Molina & Wilfred F. J. Ijcken & Elena Rebollo & Álvaro Rada-Iglesias & Marian A. Martínez-Balbás, 2022. "JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- David Flores-Solis & Irina P. Lushpinskaia & Anton A. Polyansky & Arya Changiarath & Marc Boehning & Milana Mirkovic & James Walshe & Lisa M. Pietrek & Patrick Cramer & Lukas S. Stelzl & Bojan Zagrovi, 2023. "Driving forces behind phase separation of the carboxy-terminal domain of RNA polymerase II," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Katerina Linhartova & Francesco Luca Falginella & Martin Matl & Marek Sebesta & Robert Vácha & Richard Stefl, 2024. "Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Hui Wang & Boyuan Li & Linyu Zuo & Bo Wang & Yan Yan & Kai Tian & Rong Zhou & Chenlu Wang & Xizi Chen & Yongpeng Jiang & Haonan Zheng & Fangfei Qin & Bin Zhang & Yang Yu & Chao-Pei Liu & Yanhui Xu & J, 2022. "The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-26, December.
- Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Halima H. Schede & Pradeep Natarajan & Arup K. Chakraborty & Krishna Shrinivas, 2023. "A model for organization and regulation of nuclear condensates by gene activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Hossein Salari & Geneviève Fourel & Daniel Jost, 2024. "Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Min Lee & Hyungseok C. Moon & Hyeonjeong Jeong & Dong Wook Kim & Hye Yoon Park & Yongdae Shin, 2024. "Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Mitsuaki Fujimoto & Ryosuke Takii & Masaki Matsumoto & Mariko Okada & Keiich I. Nakayama & Ryuichiro Nakato & Katsunori Fujiki & Katsuhiko Shirahige & Akira Nakai, 2022. "HSF1 phosphorylation establishes an active chromatin state via the TRRAP–TIP60 complex and promotes tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Sarah M. Lloyd & Daniel B. Leon & Mari O. Brady & Deborah Rodriguez & Madison P. McReynolds & Junghun Kweon & Amy E. Neely & Laura A. Blumensaadt & Patric J. Ho & Xiaomin Bao, 2022. "CDK9 activity switch associated with AFF1 and HEXIM1 controls differentiation initiation from epidermal progenitors," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Mina Farag & Wade M. Borcherds & Anne Bremer & Tanja Mittag & Rohit V. Pappu, 2023. "Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Zhaowei Yu & Qi Wang & Qichen Zhang & Yawen Tian & Guo Yan & Jidong Zhu & Guangya Zhu & Yong Zhang, 2024. "Decoding the genomic landscape of chromatin-associated biomolecular condensates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Weiliang Mo & Junchuan Zhang & Li Zhang & Zhenming Yang & Liang Yang & Nan Yao & Yong Xiao & Tianhong Li & Yaxing Li & Guangmei Zhang & Mingdi Bian & Xinglin Du & Zecheng Zuo, 2022. "Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
- Lisa-Marie Appel & Vedran Franke & Melania Bruno & Irina Grishkovskaya & Aiste Kasiliauskaite & Tanja Kaufmann & Ursula E. Schoeberl & Martin G. Puchinger & Sebastian Kostrhon & Carmen Ebenwaldner & M, 2021. "PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
- Dandi Sun & Xiaoqian Shang & Hanwen Cao & Soon-Jae Lee & Li Wang & Yantai Gan & Shoujiang Feng, 2024. "Physio-Biochemical Mechanisms of Arbuscular Mycorrhizal Fungi Enhancing Plant Resistance to Abiotic Stress," Agriculture, MDPI, vol. 14(12), pages 1-20, December.
- Vladyslava Gorbovytska & Seung-Kyoon Kim & Filiz Kuybu & Michael Götze & Dahun Um & Keunsoo Kang & Andreas Pittroff & Theresia Brennecke & Lisa-Marie Schneider & Alexander Leitner & Tae-Kyung Kim & Cl, 2022. "Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
- Shuang Hou & Jiaojiao Hu & Zhaowei Yu & Dan Li & Cong Liu & Yong Zhang, 2024. "Machine learning predictor PSPire screens for phase-separating proteins lacking intrinsically disordered regions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35286-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.