IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i8d10.1038_s41560-019-0413-3.html
   My bibliography  Save this article

Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy

Author

Listed:
  • Jiangyan Wang

    (Stanford University)

  • William Huang

    (Stanford University)

  • Allen Pei

    (Stanford University)

  • Yuzhang Li

    (Stanford University)

  • Feifei Shi

    (Stanford University)

  • Xiaoyun Yu

    (Stanford University)

  • Yi Cui

    (Stanford University
    Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory)

Abstract

Operations of lithium-ion batteries have long been limited to a narrow temperature range close to room temperature. At elevated temperatures, cycling degradation speeds up due to enhanced side reactions, especially when high-reactivity lithium metal is used as the anode. Here, we demonstrate enhanced performance in lithium metal batteries operated at elevated temperatures. In an ether-based electrolyte at 60 °C, an average Coulombic efficiency of 99.3% is obtained and more than 300 stable cycles are realized, but, at 20 °C, the Coulombic efficiency drops dramatically within 75 cycles, corresponding to an average Coulombic efficiency of 90.2%. Cryo-electron microscopy reveals a drastically different solid electrolyte interface nanostructure emerging at 60 °C, which maintains mechanical stability, inhibits continuous side reactions and guarantees good cycling stability and low electrochemical impedance. Furthermore, larger lithium particles grown at the elevated temperature reduce the electrolyte/electrode interfacial area, which decreases the per-cycle lithium loss and enables higher Coulombic efficiencies.

Suggested Citation

  • Jiangyan Wang & William Huang & Allen Pei & Yuzhang Li & Feifei Shi & Xiaoyun Yu & Yi Cui, 2019. "Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy," Nature Energy, Nature, vol. 4(8), pages 664-670, August.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:8:d:10.1038_s41560-019-0413-3
    DOI: 10.1038/s41560-019-0413-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0413-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0413-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minsung Baek & Jinyoung Kim & Kwanghoon Jeong & Seonmo Yang & Heejin Kim & Jimin Lee & Minkwan Kim & Ki Jae Kim & Jang Wook Choi, 2023. "Naked metallic skin for homo-epitaxial deposition in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Jijiang Liu & Wei Hao & Mingming Fang & Xin Chen & Yongteng Dong & Yuanmao Chen & Zhiyong Wang & Xinyang Yue & Zheng Liang, 2024. "Screening of F-containing electrolyte additives and clarifying their decomposition routes for stable Li metal anodes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Solomon T. Oyakhire & Wenbo Zhang & Andrew Shin & Rong Xu & David T. Boyle & Zhiao Yu & Yusheng Ye & Yufei Yang & James A. Raiford & William Huang & Joel R. Schneider & Yi Cui & Stacey F. Bent, 2022. "Electrical resistance of the current collector controls lithium morphology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:8:d:10.1038_s41560-019-0413-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.