IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29954-6.html
   My bibliography  Save this article

Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes

Author

Listed:
  • Shuo Jin

    (Cornell University)

  • Jiefu Yin

    (Cornell University)

  • Xiaosi Gao

    (Cornell University)

  • Arpita Sharma

    (Cornell University)

  • Pengyu Chen

    (Cornell University)

  • Shifeng Hong

    (Cornell University)

  • Qing Zhao

    (Cornell University)

  • Jingxu Zheng

    (Cornell University)

  • Yue Deng

    (Cornell University)

  • Yong Lak Joo

    (Cornell University)

  • Lynden A. Archer

    (Cornell University)

Abstract

Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm−2; 2.6 mAh cm−2). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I2 and Zn||MnO2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm−2 and capacity of approximately 0.85 mAh cm−2. Finally, we demonstrate that Zn||I2-carbon pouch cells (9 cm2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm−2.

Suggested Citation

  • Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29954-6
    DOI: 10.1038/s41467-022-29954-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29954-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29954-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giorgia Zampardi & Fabio La Mantia, 2022. "Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    2. Huilin Pan & Yuyan Shao & Pengfei Yan & Yingwen Cheng & Kee Sung Han & Zimin Nie & Chongmin Wang & Jihui Yang & Xiaolin Li & Priyanka Bhattacharya & Karl T. Mueller & Jun Liu, 2016. "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    3. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    4. Mukul D. Tikekar & Snehashis Choudhury & Zhengyuan Tu & Lynden A. Archer, 2016. "Design principles for electrolytes and interfaces for stable lithium-metal batteries," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    5. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    2. Qing Zhao & Yue Deng & Nyalaliska W. Utomo & Jingxu Zheng & Prayag Biswal & Jiefu Yin & Lynden A. Archer, 2021. "On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Qing Li & Ao Chen & Donghong Wang & Yuwei Zhao & Xiaoqi Wang & Xu Jin & Bo Xiong & Chunyi Zhi, 2022. "Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Solomon T. Oyakhire & Wenbo Zhang & Andrew Shin & Rong Xu & David T. Boyle & Zhiao Yu & Yusheng Ye & Yufei Yang & James A. Raiford & William Huang & Joel R. Schneider & Yi Cui & Stacey F. Bent, 2022. "Electrical resistance of the current collector controls lithium morphology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    6. Kai Yang & Hongchang Cai & Suran Li & Yu Wang & Xue Zhang & Zhenxuan Wu & Yilin Lai & Minella Bezha & Klara Bezha & Naoto Nagaoka & Yuejiu Zheng & Xuning Feng, 2024. "Research on Quantitative Diagnosis of Dendrites Based on Titration Gas Chromatography Technology," Energies, MDPI, vol. 17(10), pages 1-19, May.
    7. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    8. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Chao Chen & Jiaming Zhang & Benrui Hu & Qianwen Liang & Xunhui Xiong, 2023. "Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    12. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Alessandro Innocenti & Dominic Bresser & Jürgen Garche & Stefano Passerini, 2024. "A critical discussion of the current availability of lithium and zinc for use in batteries," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Baojiu Hao & Jinqiu Zhou & Hao Yang & Changhao Zhu & Zhenkang Wang & Jie Liu & Chenglin Yan & Tao Qian, 2024. "Concentration polarization induced phase rigidification in ultralow salt colloid chemistry to stabilize cryogenic Zn batteries," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Amiri, Ahmad & Swart, Edward Ned & Polycarpou, Andreas A., 2021. "Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29954-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.