IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35351-w.html
   My bibliography  Save this article

Multistep diversification in spatiotemporal bacterial-phage coevolution

Author

Listed:
  • Einat Shaer Tamar

    (Technion–Israel Institute of Technology)

  • Roy Kishony

    (Technion–Israel Institute of Technology
    Technion–Israel Institute of Technology
    Technion–Israel Institute of Technology)

Abstract

The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.

Suggested Citation

  • Einat Shaer Tamar & Roy Kishony, 2022. "Multistep diversification in spatiotemporal bacterial-phage coevolution," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35351-w
    DOI: 10.1038/s41467-022-35351-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35351-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35351-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harris H. Wang & Farren J. Isaacs & Peter A. Carr & Zachary Z. Sun & George Xu & Craig R. Forest & George M. Church, 2009. "Programming cells by multiplex genome engineering and accelerated evolution," Nature, Nature, vol. 460(7257), pages 894-898, August.
    2. Sarit Avrani & Omri Wurtzel & Itai Sharon & Rotem Sorek & Debbie Lindell, 2011. "Genomic island variability facilitates Prochlorococcus–virus coexistence," Nature, Nature, vol. 474(7353), pages 604-608, June.
    3. Benjamin Kerr & Claudia Neuhauser & Brendan J. M. Bohannan & Antony M. Dean, 2006. "Local migration promotes competitive restraint in a host–pathogen 'tragedy of the commons'," Nature, Nature, vol. 442(7098), pages 75-78, July.
    4. Elina Laanto & Ville Hoikkala & Janne Ravantti & Lotta-Riina Sundberg, 2017. "Long-term genomic coevolution of host-parasite interaction in the natural environment," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molly F. Parsons & Matthew F. Allan & Shanshan Li & Tyson R. Shepherd & Sakul Ratanalert & Kaiming Zhang & Krista M. Pullen & Wah Chiu & Silvi Rouskin & Mark Bathe, 2023. "3D RNA-scaffolded wireframe origami," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    3. Asher Leeks & Stuart A. West & Melanie Ghoul, 2021. "The evolution of cheating in viruses," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.
    5. Marc Teufel & Carlo A. Klein & Maurice Mager & Patrick Sobetzko, 2022. "A multifunctional system for genome editing and large-scale interspecies gene transfer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Carolyn N. Bayer & Maja Rennig & Anja K. Ehrmann & Morten H. H. Nørholm, 2021. "A standardized genome architecture for bacterial synthetic biology (SEGA)," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Daniel Mark Shapiro & Gunasheil Mandava & Sibel Ebru Yalcin & Pol Arranz-Gibert & Peter J. Dahl & Catharine Shipps & Yangqi Gu & Vishok Srikanth & Aldo I. Salazar-Morales & J. Patrick O’Brien & Koen V, 2022. "Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Michael B. Doud & Animesh Gupta & Victor Li & Sarah J. Medina & Caesar A. Fuente & Justin R. Meyer, 2024. "Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Brian J. Caldwell & Andrew S. Norris & Caroline F. Karbowski & Alyssa M. Wiegand & Vicki H. Wysocki & Charles E. Bell, 2022. "Structure of a RecT/Redβ family recombinase in complex with a duplex intermediate of DNA annealing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Jack M. Moen & Kyle Mohler & Svetlana Rogulina & Xiaojian Shi & Hongying Shen & Jesse Rinehart, 2022. "Enhanced access to the human phosphoproteome with genetically encoded phosphothreonine," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Siwei Li & Jingjing An & Yaqiu Li & Xiagu Zhu & Dongdong Zhao & Lixian Wang & Yonghui Sun & Yuanzhao Yang & Changhao Bi & Xueli Zhang & Meng Wang, 2022. "Automated high-throughput genome editing platform with an AI learning in situ prediction model," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Juan A. Bonachela, 2024. "Viral plasticity facilitates host diversity in challenging environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Gabriel Magno Freitas Almeida & Ville Hoikkala & Janne Ravantti & Noora Rantanen & Lotta-Riina Sundberg, 2022. "Mucin induces CRISPR-Cas defense in an opportunistic pathogen," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. T. Kuiken & G. Dana & K. Oye & D. Rejeski, 2014. "Shaping ecological risk research for synthetic biology," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(3), pages 191-199, September.
    17. Mauro Mobilia & Alastair M. Rucklidge & Bartosz Szczesny, 2016. "The Influence of Mobility Rate on Spiral Waves in Spatial Rock-Paper-Scissors Games," Games, MDPI, vol. 7(3), pages 1-12, September.
    18. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Shanmugam, Sabarathinam & Ngo, Huu-Hao & Wu, Yi-Rui, 2020. "Advanced CRISPR/Cas-based genome editing tools for microbial biofuels production: A review," Renewable Energy, Elsevier, vol. 149(C), pages 1107-1119.
    20. Timothy P. Newing & Jodi L. Brewster & Lucy J. Fitschen & James C. Bouwer & Nikolas P. Johnston & Haibo Yu & Gökhan Tolun, 2022. "Redβ177 annealase structure reveals details of oligomerization and λ Red-mediated homologous DNA recombination," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35351-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.