IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030565.html
   My bibliography  Save this article

Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas

Author

Listed:
  • Lee, Minwoo
  • Lee, Dongchan
  • Park, Myeong Hyeon
  • Kang, Yong Tae
  • Kim, Yongchan

Abstract

Solar-assisted ground-source heat pumps (SGSHPs) with a serial configuration have been introduced to reduce the performance degradation of ground-source heat pumps (GSHPs) for their long-term operation. However, SGSHPs with parallel configurations have rarely been investigated in heating-dominated areas. In this study, the heating performances of a GSHP and SGSHPs with serial and parallel configurations in a heating-dominated building are analyzed using TRNSYS and compared for 20 years by varying the borehole length and solar collector area. With a borehole length of 120 m and solar collector area of 10 m2, an SGSHP with a serial configuration showed a 12.6 and 11.5% higher ground temperature and solar collector efficiency, respectively, than the parallel configuration owing to the solar heat injection into the ground. However, an SGSHP with a parallel configuration decreased the energy consumption by 19.6 and 13.8% compared to those for the GSHP and SGSHP with a serial configuration, respectively, owing to an improved heating capacity. Furthermore, an SGSHP with a parallel configuration can considerably decrease initial costs by reducing the borehole length.

Suggested Citation

  • Lee, Minwoo & Lee, Dongchan & Park, Myeong Hyeon & Kang, Yong Tae & Kim, Yongchan, 2022. "Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030565
    DOI: 10.1016/j.energy.2021.122807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mr. Simon Black & Ms. Ruo Chen & Ms. Aiko Mineshima & Mr. Victor Mylonas & Ian W.H. Parry & Dinar Prihardini, 2021. "Scaling up Climate Mitigation Policy in Germany," IMF Working Papers 2021/241, International Monetary Fund.
    2. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    3. Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
    4. Maximilian Lantelme & Laura K. C. Seibold & Hermut Kormann, 2021. "Structure and Age of German Family Enterprises," Springer Books, in: German Family Enterprises, edition 2, chapter 0, pages 7-17, Springer.
    5. ., 2021. "ETS politics: Germany," Chapters, in: Carbon Markets Around the Globe, chapter 9, pages 152-171, Edward Elgar Publishing.
    6. Chen, Xi & Yang, Hongxing, 2012. "Performance analysis of a proposed solar assisted ground coupled heat pump system," Applied Energy, Elsevier, vol. 97(C), pages 888-896.
    7. Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
    8. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    9. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    10. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    11. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    12. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    13. Nico W. Hendrickx & William I. L. Lawrie & Maximilian Russ & Floor Riggelen & Sander L. Snoo & Raymond N. Schouten & Amir Sammak & Giordano Scappucci & Menno Veldhorst, 2021. "A four-qubit germanium quantum processor," Nature, Nature, vol. 591(7851), pages 580-585, March.
    14. Maximilian Lantelme & Laura K. C. Seibold & Hermut Kormann, 2021. "German Family Enterprises," Springer Books, Springer, edition 2, number 978-3-030-69759-4, June.
    15. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    16. Naudé, Wim & Nagler, Paula, 2021. "The Rise and Fall of German Innovation," IZA Discussion Papers 14154, Institute of Labor Economics (IZA).
    17. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Zhihua & Wang, Shugang, 2018. "A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 214(C), pages 178-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Shihao & Yu, Yuelong & Wang, Hao & Yao, Yang & Ni, Long, 2023. "An economic-energetic-environmental evaluation algorithm for hybrid mid-depth geothermal heating system," Energy, Elsevier, vol. 282(C).
    2. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    3. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
    4. PELELLA, Francesco & ZSEMBINSZKI, Gabriel & VISCITO, Luca & William MAURO, Alfonso & CABEZA, Luisa F., 2023. "Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage," Applied Energy, Elsevier, vol. 331(C).
    5. Yujuan Yang & Ronghua Wu & Yuanbo Yue & Yao Zhang & Yuanyuan Sun & Shunjie Liu, 2023. "Heating Performance and Economic Analysis of Solar-Assisted Cold-Water Phase-Change-Energy Heat Pump System in Series and Parallel Connections," Energies, MDPI, vol. 16(16), pages 1-21, August.
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    7. Hu, Zicheng & Li, Wanfeng & Zhang, Haiyan & Liu, Xiaoyuan & Geng, Shuwen & Han, Yuchen & Ge, Fenghua, 2024. "Soil thermal imbalance analysis of ground source heat pump system of residential and office buildings in sixteen cities," Renewable Energy, Elsevier, vol. 221(C).
    8. Chen, Liangqi & Yue, Huifeng & Wang, Jiangfeng & Lou, Juwei & Wang, Shunsen & Guo, Yumin & Deng, Bohao & Sun, Lu, 2023. "Thermodynamic analysis of a hybrid energy system coupling solar organic Rankine cycle and ground source heat pump: Exploring heat cascade utilization," Energy, Elsevier, vol. 284(C).
    9. Li, Jinping & Sun, Xiaohua & Zhu, Junjie & Karkon, Ehsan Gholamian & Novakovic, Vojislav, 2024. "Performance comparison of air source heat pump coupling with solar evacuated tube water heater and that with micro heat pipe PV/T," Energy, Elsevier, vol. 300(C).
    10. Lee, Minwoo & Kim, Jinyoung & Shin, Hyun Ho & Cho, Wonhee & Kim, Yongchan, 2022. "CO2 emissions and energy performance analysis of ground-source and solar-assisted ground-source heat pumps using low-GWP refrigerants," Energy, Elsevier, vol. 261(PA).
    11. Song, Zhiying & Zhang, Yuzhe & Ji, Jie & He, Wei & Hu, Zhongting & Xuan, Qingdong, 2024. "Yearly photoelectric/thermal and economic performance comparison between CPV and FPV dual-source heat pump systems in different regions," Energy, Elsevier, vol. 289(C).
    12. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    13. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    14. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    15. Rashad, Magdi & Żabnieńska-Góra, Alina & Norman, Les & Jouhara, Hussam, 2022. "Analysis of energy demand in a residential building using TRNSYS," Energy, Elsevier, vol. 254(PB).
    16. Lee, Minwoo & Ham, Se Hyeon & Lee, Sewon & Kim, Jinyoung & Kim, Yongchan, 2023. "Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Minwoo & Ham, Se Hyeon & Lee, Sewon & Kim, Jinyoung & Kim, Yongchan, 2023. "Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions," Energy, Elsevier, vol. 270(C).
    2. E. Klein & E. Fouksman, 2022. "Reparations as a Rightful Share: From Universalism to Redress in Distributive Justice," Development and Change, International Institute of Social Studies, vol. 53(1), pages 31-57, January.
    3. Raj, Praveen Vijaya Raj Pushpa & Nagarajan, Bagathsingh & Schoenherr, Tobias & Ramkumar, M., 2023. "A comparative investigation of a seller’s disaster payment period policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    4. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    5. Dotzauer, Martin & Oehmichen, Katja & Thrän, Daniela & Weber, Christoph, 2022. "Empirical greenhouse gas assessment for flexible bioenergy in interaction with the German power sector," Renewable Energy, Elsevier, vol. 181(C), pages 1100-1109.
    6. Lee, Minwoo & Kim, Jinyoung & Shin, Hyun Ho & Cho, Wonhee & Kim, Yongchan, 2022. "CO2 emissions and energy performance analysis of ground-source and solar-assisted ground-source heat pumps using low-GWP refrigerants," Energy, Elsevier, vol. 261(PA).
    7. Burghard, Uta & Breitschopf, Barbara & Wohlfarth, Katharina & Müller, Fabian & Keil, Julia, 2021. "Perception of monetary and non-monetary effects on the energy transition: Results of a mixed method approach," Working Papers "Sustainability and Innovation" S04/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    8. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    9. Xie, Yiwei & Hu, Pingfang & Peng, Donggen & Zhu, Na & Lei, Fei, 2023. "Development of a group control strategy based on multi-step load forecasting and its application in hybrid ground source heat pump," Energy, Elsevier, vol. 273(C).
    10. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Weibo Yang & Binbin Yang & Rui Xu, 2018. "Experimental Study on the Heat Release Operational Characteristics of a Soil Coupled Ground Heat Exchanger with Assisted Cooling Tower," Energies, MDPI, vol. 11(1), pages 1-17, January.
    12. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    13. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    14. Luo, Zhenyu & Zhu, Na & Yu, Zhongyi & Zhang, Qin & Yan, Lei & Hu, Pingfang, 2024. "Performance study of dual-source heat pump integrated with radiation capillary terminal system," Energy, Elsevier, vol. 304(C).
    15. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    16. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    17. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    18. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    20. Nahavandinezhad, Mohammad & Zahedi, Alireza, 2022. "Conceptual design of solar/geothermal hybrid system focusing on technical, economic and environmental parameters," Renewable Energy, Elsevier, vol. 181(C), pages 1110-1125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.