IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30870-y.html
   My bibliography  Save this article

Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys

Author

Listed:
  • Qiang Lv

    (Soochow University
    Soochow University)

  • Xue-Dong Wang

    (Soochow University)

  • Yue Yu

    (Soochow University)

  • Ming-Peng Zhuo

    (Soochow University)

  • Min Zheng

    (Soochow University
    Suzhou Industrial Park)

  • Liang-Sheng Liao

    (Soochow University
    Macau University of Science and Technology, Taipa)

Abstract

Organic heterostructure nanowires, such as multiblock, core/shell, branch-like and related compounds, have attracted chemists’ extensive attention because of their novel physicochemical properties. However, owing to the difficulty in solving the lattice mismatch of distinct molecules, the construction of organic heterostructures at large scale remains challenging, which restricts its wide use in future applications. In this work, we define a concept of lattice-mismatch-free for hierarchical self-assembly of organic semiconductor molecules, allowing for the large-scale synthesis of organic heterostructure nanowires composed of the organic alloys and cocrystals. Thus, various types of organic triblock nanowires are prepared in large scale, and the length ratio of different segments of the triblock nanowires can be precisely regulated by changing the stoichiometric ratio of different components. These results pave the way towards fine synthesis of heterostructures in a large scale and facilitate their applications in organic optoelectronics at micro/nanoscale.

Suggested Citation

  • Qiang Lv & Xue-Dong Wang & Yue Yu & Ming-Peng Zhuo & Min Zheng & Liang-Sheng Liao, 2022. "Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30870-y
    DOI: 10.1038/s41467-022-30870-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30870-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30870-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ming-Peng Zhuo & Jun-Jie Wu & Xue-Dong Wang & Yi-Chen Tao & Yi Yuan & Liang-Sheng Liao, 2019. "Hierarchical self-assembly of organic heterostructure nanowires," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Chen Sun & Mark T. Wade & Yunsup Lee & Jason S. Orcutt & Luca Alloatti & Michael S. Georgas & Andrew S. Waterman & Jeffrey M. Shainline & Rimas R. Avizienis & Sen Lin & Benjamin R. Moss & Rajesh Kumar, 2015. "Single-chip microprocessor that communicates directly using light," Nature, Nature, vol. 528(7583), pages 534-538, December.
    3. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengjing Liu & Xinming Zhuang & Mingxu Wang & Dongqing Qi & Shengpan Dong & SenPo Yip & Yanxue Yin & Jie Zhang & Zixu Sa & Kepeng Song & Longbing He & Yang Tan & You Meng & Johnny C. Ho & Lei Liao & F, 2023. "Lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Meiting Song & John Steinmetz & Yi Zhang & Juniyali Nauriyal & Kevin Lyons & Andrew N. Jordan & Jaime Cardenas, 2021. "Enhanced on-chip phase measurement by inverse weak value amplification," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    8. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Valeria Saggio & Carlos Errando-Herranz & Samuel Gyger & Christopher Panuski & Mihika Prabhu & Lorenzo Santis & Ian Christen & Dalia Ornelas-Huerta & Hamza Raniwala & Connor Gerlach & Marco Colangelo , 2024. "Cavity-enhanced single artificial atoms in silicon," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    12. Joo, Mingyu & Kim, Seung Hyun & Ghose, Anindya & Wilbur, Kenneth C., 2023. "Designing Distributed Ledger technologies, like Blockchain, for advertising markets," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 12-21.
    13. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Ming-Peng Zhuo & Xiao Wei & Yuan-Yuan Li & Ying-Li Shi & Guang-Peng He & Huixue Su & Ke-Qin Zhang & Jin-Ping Guan & Xue-Dong Wang & Yuchen Wu & Liang-Sheng Liao, 2024. "Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Kaihang Lu & Zengqi Chen & Hao Chen & Wu Zhou & Zunyue Zhang & Hon Ki Tsang & Yeyu Tong, 2024. "Empowering high-dimensional optical fiber communications with integrated photonic processors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30870-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.