IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-11731-7.html
   My bibliography  Save this article

Hierarchical self-assembly of organic heterostructure nanowires

Author

Listed:
  • Ming-Peng Zhuo

    (Soochow University)

  • Jun-Jie Wu

    (Soochow University)

  • Xue-Dong Wang

    (Soochow University)

  • Yi-Chen Tao

    (Soochow University)

  • Yi Yuan

    (Soochow University)

  • Liang-Sheng Liao

    (Soochow University
    Institute of Organic Optoelectronics, JITRI, Wujiang)

Abstract

Organic heterostructures (OHSs) integrating the intrinsic heterostructure characters as well as the organic semiconductor properties have attracted intensive attention in material chemistry. However, the precise bottom-up synthesis of OHSs is still challenging owing to the general occurrence of homogeneous-nucleation and the difficult manipulation of noncovalent interactions. Herein, we present the rational synthesis of the longitudinally/horizontally-epitaxial growth of one-dimensional OHSs including triblock and core/shell nanowires with quantitatively-manipulated microstructure via a hierarchical self-assembly method by regulating the noncovalent interactions: hydrogen bond (−15.66 kcal mol−1) > halogen bond (−4.90 kcal mol−1) > π-π interaction (−0.09 kcal mol−1). In the facet-selective epitaxial growth strategy, the lattice-matching and the surface-interface energy balance respectively facilitate the realization of triblock and core/shell heterostructures. This hierarchical self-assembly approach opens up avenues to the fine synthesis of OHSs. We foresee application possibilities in integrated optoelectronics, such as the nanoscale multiple input/out optical logic gate with high-fidelity signal.

Suggested Citation

  • Ming-Peng Zhuo & Jun-Jie Wu & Xue-Dong Wang & Yi-Chen Tao & Yi Yuan & Liang-Sheng Liao, 2019. "Hierarchical self-assembly of organic heterostructure nanowires," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11731-7
    DOI: 10.1038/s41467-019-11731-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-11731-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-11731-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqing Xu & Guanheng Huang & Zhan Yang & Ziqi Deng & Chen Zhou & Jian-An Li & Ming-De Li & Tao Hu & Ben Zhong Tang & David Lee Phillips, 2024. "Nucleic-acid-base photofunctional cocrystal for information security and antimicrobial applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ming-Peng Zhuo & Xiao Wei & Yuan-Yuan Li & Ying-Li Shi & Guang-Peng He & Huixue Su & Ke-Qin Zhang & Jin-Ping Guan & Xue-Dong Wang & Yuchen Wu & Liang-Sheng Liao, 2024. "Visualizing the interfacial-layer-based epitaxial growth process toward organic core-shell architectures," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Subham Ranjan & Avulu Vinod Kumar & Rajadurai Chandrasekar & Satoshi Takamizawa, 2024. "Spatially controllable and mechanically switchable isomorphous organoferroeleastic crystal optical waveguides and networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Qiang Lv & Xue-Dong Wang & Yue Yu & Ming-Peng Zhuo & Min Zheng & Liang-Sheng Liao, 2022. "Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11731-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.