IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29860-x.html
   My bibliography  Save this article

Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure

Author

Listed:
  • Cheng Yang

    (Sun Yat-Sen University)

  • Qianni Wu

    (Sun Yat-Sen University)

  • Junqing Liu

    (the First Affiliated Hospital of Jinan University)

  • Jingshan Mo

    (Sun Yat-Sen University)

  • Xiangling Li

    (Sun Yat-Sen University
    Sun Yat-Sen University)

  • Chengduan Yang

    (Sun Yat-Sen University
    Sun Yat-Sen University)

  • Ziqi Liu

    (Sun Yat-Sen University)

  • Jingbo Yang

    (Sun Yat-Sen University
    Sun Yat-Sen University)

  • Lelun Jiang

    (Sun Yat-Sen University)

  • Weirong Chen

    (Sun Yat-Sen University)

  • Hui-jiuan Chen

    (Sun Yat-Sen University)

  • Ji Wang

    (Sun Yat-Sen University)

  • Xi Xie

    (Sun Yat-Sen University
    Sun Yat-Sen University)

Abstract

Engineering wearable devices that can wirelessly track intraocular pressure and offer feedback-medicine administrations are highly desirable for glaucoma treatments, yet remain challenging due to issues of limited sizes, wireless operations, and wireless cross-coupling. Here, we present an integrated wireless theranostic contact lens for in situ electrical sensing of intraocular pressure and on-demand anti-glaucoma drug delivery. The wireless theranostic contact lens utilizes a highly compact structural design, which enables high-degreed integration and frequency separation on the curved and limited surface of contact lens. The wireless intraocular pressure sensing modulus could ultra-sensitively detect intraocular pressure fluctuations, due to the unique cantilever configuration design of capacitive sensing circuit. The drug delivery modulus employs an efficient wireless power transfer circuit, to trigger delivery of anti-glaucoma drug into aqueous chamber via iontophoresis. The minimally invasive, smart, wireless and theranostic features endow the wireless theranostic contact lens as a highly promising system for glaucoma treatments.

Suggested Citation

  • Cheng Yang & Qianni Wu & Junqing Liu & Jingshan Mo & Xiangling Li & Chengduan Yang & Ziqi Liu & Jingbo Yang & Lelun Jiang & Weirong Chen & Hui-jiuan Chen & Ji Wang & Xi Xie, 2022. "Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29860-x
    DOI: 10.1038/s41467-022-29860-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29860-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29860-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aaron D. Mickle & Sang Min Won & Kyung Nim Noh & Jangyeol Yoon & Kathleen W. Meacham & Yeguang Xue & Lisa A. McIlvried & Bryan A. Copits & Vijay K. Samineni & Kaitlyn E. Crawford & Do Hoon Kim & Paulo, 2019. "A wireless closed-loop system for optogenetic peripheral neuromodulation," Nature, Nature, vol. 565(7739), pages 361-365, January.
    2. Joohee Kim & Minji Kim & Mi-Sun Lee & Kukjoo Kim & Sangyoon Ji & Yun-Tae Kim & Jihun Park & Kyungmin Na & Kwi-Hyun Bae & Hong Kyun Kim & Franklin Bien & Chang Young Lee & Jang-Ung Park, 2017. "Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hengtian Zhu & Huan Yang & Siqi Xu & Yuanyuan Ma & Shugeng Zhu & Zhengyi Mao & Weiwei Chen & Zizhong Hu & Rongrong Pan & Yurui Xu & Yifeng Xiong & Ye Chen & Yanqing Lu & Xinghai Ning & Dechen Jiang & , 2024. "Frequency-encoded eye tracking smart contact lens for human–machine interaction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yuxiang Shi & Peng Yang & Rui Lei & Zhaoqi Liu & Xuanyi Dong & Xinglin Tao & Xiangcheng Chu & Zhong Lin Wang & Xiangyu Chen, 2023. "Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Shangda Qu & Lin Sun & Song Zhang & Jiaqi Liu & Yue Li & Junchi Liu & Wentao Xu, 2023. "An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Bekir Aksoy & Yufei Hao & Giulio Grasso & Krishna Manaswi Digumarti & Vito Cacucciolo & Herbert Shea, 2022. "Shielded soft force sensors," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    4. Tae Yeon Kim & Jee Won Mok & Sang Hoon Hong & Sang Hoon Jeong & Hyunsik Choi & Sangbaie Shin & Choun-Ki Joo & Sei Kwang Hahn, 2022. "Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Alban Guesdon-Vennerie & Patrick Couvreur & Fatoumia Ali & Frédéric Pouzoulet & Christophe Roulin & Immaculada Martínez-Rovira & Guillaume Bernadat & François-Xavier Legrand & Claudie Bourgaux & Cyril, 2022. "Breaking photoswitch activation depth limit using ionising radiation stimuli adapted to clinical application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Hengtian Zhu & Huan Yang & Siqi Xu & Yuanyuan Ma & Shugeng Zhu & Zhengyi Mao & Weiwei Chen & Zizhong Hu & Rongrong Pan & Yurui Xu & Yifeng Xiong & Ye Chen & Yanqing Lu & Xinghai Ning & Dechen Jiang & , 2024. "Frequency-encoded eye tracking smart contact lens for human–machine interaction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Woo Seok Kim & M. Ibrahim Khot & Hyun-Myung Woo & Sungcheol Hong & Dong-Hyun Baek & Thomas Maisey & Brandon Daniels & P. Louise Coletta & Byung-Jun Yoon & David G. Jayne & Sung Il Park, 2022. "AI-enabled, implantable, multichannel wireless telemetry for photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jinyuan Zhang & Kyunghun Kim & Ho Joong Kim & Dawn Meyer & Woohyun Park & Seul Ah Lee & Yumin Dai & Bongjoong Kim & Haesoo Moon & Jay V. Shah & Keely E. Harris & Brett Collar & Kangying Liu & Pedro Ir, 2022. "Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Kyowon Kang & Seongryeol Ye & Chanho Jeong & Jinmo Jeong & Yeong-sinn Ye & Jin-Young Jeong & Yu-Jin Kim & Selin Lim & Tae Hee Kim & Kyung Yeun Kim & Jong Uk Kim & Gwan In Kim & Do Hoon Chun & Kiho Kim, 2024. "Bionic artificial skin with a fully implantable wireless tactile sensory system for wound healing and restoring skin tactile function," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Yunhui Liu & Lu Zhang & Nan Hu & Jie Shao & Dazhi Yang & Changshun Ruan & Shishu Huang & Liping Wang & William W. Lu & Xinzhou Zhang & Fan Yang, 2022. "An optogenetic approach for regulating human parathyroid hormone secretion," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29860-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.