IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53836-8.html
   My bibliography  Save this article

An ultrasensitive multimodal intracranial pressure biotelemetric system enabled by exceptional point and iontronics

Author

Listed:
  • Jie Li

    (Zhejiang University
    Zhejiang University)

  • Fan Zhang

    (Zhejiang University
    Zhejiang University)

  • Xiaobin Xia

    (Hangzhou Dianzi University)

  • Kaihang Zhang

    (Zhejiang University
    Zhejiang University)

  • Jianhui Wu

    (Zhejiang University
    Zhejiang University)

  • Yulu Liu

    (Zhejiang University
    Zhejiang University
    Ningbo University)

  • Chi Zhang

    (Zhejiang University
    Zhejiang University)

  • Xinyu Cai

    (Zhejiang University
    Zhejiang University)

  • Jiaqi Lu

    (Zhejiang University
    Zhejiang University)

  • Liangquan Xu

    (Zhejiang University
    Zhejiang University)

  • Rui Wan

    (Zhejiang University
    Zhejiang University)

  • Dinku Hazarika

    (Zhejiang University
    Zhejiang University)

  • Weipeng Xuan

    (Hangzhou Dianzi University)

  • Jinkai Chen

    (Hangzhou Dianzi University)

  • Zhen Cao

    (Zhejiang University
    Zhejiang University)

  • Yubo Li

    (Zhejiang University
    Zhejiang University)

  • Hao Jin

    (Zhejiang University
    Zhejiang University)

  • Shurong Dong

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Shaomin Zhang

    (Zhejiang University
    Zhejiang University)

  • Zhilu Ye

    (Xi’an Jiaotong University)

  • Minye Yang

    (Xi’an Jiaotong University)

  • Pai-Yen Chen

    (University of Illinois Chicago)

  • Jikui Luo

    (Zhejiang University
    Zhejiang University
    Zhejiang University)

Abstract

The accurate monitoring of vital physiological parameters, exemplified by heart rate, respiratory rate, and intracranial pressure (ICP), is of paramount importance, particularly for managing severe cranial injuries. Despite the rapid development of implantable ICP sensing systems over the past decades, they still suffer from, for example, wire connection, low sensitivity, poor resolution, and the inability to monitor multiple variables simultaneously. Here, we propose an ultrasensitive multimodal biotelemetric system that amalgamates an iontronic pressure transducer with exceptional point (EP) operation for the monitoring of ICP signals. The proposed system can exhibit extraordinary performance regarding the detection of minuscule ICP fluctuation, demonstrated by the sensitivity of 115.95 kHz/mmHg and the sensing resolution down to 0.003 mmHg. Our system excels not only in the accurate quantification of ICP levels but also in distinguishing respiration and cardiac activities from ICP signals, thereby achieving the multimodal monitoring of ICP, respiratory, and heart rates within a single system. Our work may provide a pragmatic avenue for the real-time wireless monitoring of ICP and thus hold great potential to be extended to the monitoring of other vital physiological indicators.

Suggested Citation

  • Jie Li & Fan Zhang & Xiaobin Xia & Kaihang Zhang & Jianhui Wu & Yulu Liu & Chi Zhang & Xinyu Cai & Jiaqi Lu & Liangquan Xu & Rui Wan & Dinku Hazarika & Weipeng Xuan & Jinkai Chen & Zhen Cao & Yubo Li , 2024. "An ultrasensitive multimodal intracranial pressure biotelemetric system enabled by exceptional point and iontronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53836-8
    DOI: 10.1038/s41467-024-53836-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53836-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53836-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ningning Bai & Liu Wang & Qi Wang & Jue Deng & Yan Wang & Peng Lu & Jun Huang & Gang Li & Yuan Zhang & Junlong Yang & Kewei Xie & Xuanhe Zhao & Chuan Fei Guo, 2020. "Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Lisa Y. Chen & Benjamin C. -K. Tee & Alex L. Chortos & Gregor Schwartz & Victor Tse & Darren J. Lipomi & H. -S. Philip Wong & Michael V. McConnell & Zhenan Bao, 2014. "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    3. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 548(7666), pages 187-191, August.
    4. Shu Gong & Willem Schwalb & Yongwei Wang & Yi Chen & Yue Tang & Jye Si & Bijan Shirinzadeh & Wenlong Cheng, 2014. "A wearable and highly sensitive pressure sensor with ultrathin gold nanowires," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    5. Ruoxi Yang & Ankan Dutta & Bowen Li & Naveen Tiwari & Wanqing Zhang & Zhenyuan Niu & Yuyan Gao & Daniel Erdely & Xin Xin & Tiejun Li & Huanyu Cheng, 2023. "Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Zeng Zhang & Misun Hwang & Todd J. Kilbaugh & Anush Sridharan & Joseph Katz, 2022. "Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Rodion Kononchuk & Jizhe Cai & Fred Ellis & Ramathasan Thevamaran & Tsampikos Kottos, 2022. "Exceptional-point-based accelerometers with enhanced signal-to-noise ratio," Nature, Nature, vol. 607(7920), pages 697-702, July.
    8. Ruoxi Yang & Ankan Dutta & Bowen Li & Naveen Tiwari & Wanqing Zhang & Zhenyuan Niu & Yuyan Gao & Daniel Erdely & Xin Xin & Tiejun Li & Huanyu Cheng, 2023. "Author Correction: Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids," Nature Communications, Nature, vol. 14(1), pages 1-2, December.
    9. Hanchuan Tang & Yueying Yang & Zhen Liu & Wenlong Li & Yipeng Zhang & Yizhou Huang & Tianyu Kang & Yang Yu & Na Li & Ye Tian & Xurui Liu & Yifan Cheng & Zhouping Yin & Xiaobing Jiang & Xiaodong Chen &, 2024. "Injectable ultrasonic sensor for wireless monitoring of intracranial signals," Nature, Nature, vol. 630(8015), pages 84-90, June.
    10. Cheng Yang & Qianni Wu & Junqing Liu & Jingshan Mo & Xiangling Li & Chengduan Yang & Ziqi Liu & Jingbo Yang & Lelun Jiang & Weirong Chen & Hui-jiuan Chen & Ji Wang & Xi Xie, 2022. "Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Yuan Zhang & Xiaomeng Zhou & Nian Zhang & Jiaqi Zhu & Ningning Bai & Xingyu Hou & Tao Sun & Gang Li & Lingyu Zhao & Yingchun Chen & Liu Wang & Chuan Fei Guo, 2024. "Ultrafast piezocapacitive soft pressure sensors with over 10 kHz bandwidth via bonded microstructured interfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Rui Chen & Tao Luo & Jincheng Wang & Renpeng Wang & Chen Zhang & Yu Xie & Lifeng Qin & Haimin Yao & Wei Zhou, 2023. "Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Hossein Hodaei & Absar U. Hassan & Steffen Wittek & Hipolito Garcia-Gracia & Ramy El-Ganainy & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2017. "Erratum: Enhanced sensitivity at higher-order exceptional points," Nature, Nature, vol. 551(7682), pages 658-658, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zhou & Xingjing Ren & Dingbang Xiao & Jianqi Zhang & Ran Huang & Zhipeng Li & Xiaopeng Sun & Xuezhong Wu & Cheng-Wei Qiu & Franco Nori & Hui Jing, 2023. "Higher-order singularities in phase-tracked electromechanical oscillators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Minye Yang & Liang Zhu & Qi Zhong & Ramy El-Ganainy & Pai-Yen Chen, 2023. "Spectral sensitivity near exceptional points as a resource for hardware encryption," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Arunn Suntharalingam & Lucas Fernández-Alcázar & Rodion Kononchuk & Tsampikos Kottos, 2023. "Noise resilient exceptional-point voltmeters enabled by oscillation quenching phenomena," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Wennan Xiong & Fan Zhang & Shiyuan Qu & Liting Yin & Kan Li & YongAn Huang, 2024. "Marangoni-driven deterministic formation of softer, hollow microstructures for sensitivity-enhanced tactile system," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yicheng Zhu & Jiankun Hou & Qi Geng & Boyi Xue & Yuping Chen & Xianfeng Chen & Li Ge & Wenjie Wan, 2024. "Storing light near an exceptional point," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Xingwei Gao & Hao He & Scott Sobolewski & Alexander Cerjan & Chia Wei Hsu, 2024. "Dynamic gain and frequency comb formation in exceptional-point lasers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Pengtao Song & Xinhui Ruan & Haijin Ding & Shengyong Li & Ming Chen & Ran Huang & Le-Man Kuang & Qianchuan Zhao & Jaw-Shen Tsai & Hui Jing & Lan Yang & Franco Nori & Dongning Zheng & Yu-xi Liu & Jing , 2024. "Experimental realization of on-chip few-photon control around exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. M. Król & I. Septembre & P. Oliwa & M. Kędziora & K. Łempicka-Mirek & M. Muszyński & R. Mazur & P. Morawiak & W. Piecek & P. Kula & W. Bardyszewski & P. G. Lagoudakis & D. D. Solnyshkov & G. Malpuech , 2022. "Annihilation of exceptional points from different Dirac valleys in a 2D photonic system," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Djorwé, P. & Alphonse, H. & Abbagari, S. & Doka, S.Y. & Engo, S.G. Nana, 2023. "Synthetic magnetism for solitons in optomechanical array," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Baheej Bathish & Raanan Gad & Fan Cheng & Kristoffer Karlsson & Ramgopal Madugani & Mark Douvidzon & Síle Nic Chormaic & Tal Carmon, 2023. "Absorption-induced transmission in plasma microphotonics," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Chen, Lei & Huang, Feifan & Wang, Hongteng & Huang, Linwei & Huang, Junhua & Liu, Gui-Shi & Chen, Yaofei & Luo, Yunhan & Chen, Zhe, 2022. "Non-Hermitian-enhanced topological protection of chaotic dynamics in one-dimensional optomechanics lattice," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    15. Kai Zhang & Zhesen Yang & Chen Fang, 2022. "Universal non-Hermitian skin effect in two and higher dimensions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Adrià Canós Valero & Hadi K. Shamkhi & Anton S. Kupriianov & Thomas Weiss & Alexander A. Pavlov & Dmitrii Redka & Vjaceslavs Bobrovs & Yuri Kivshar & Alexander S. Shalin, 2023. "Superscattering emerging from the physics of bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Shuyun Zhuo & Cheng Song & Qinfeng Rong & Tianyi Zhao & Mingjie Liu, 2022. "Shape and stiffness memory ionogels with programmable pressure-resistance response," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Dong-Yan Chen & Lei Dong & Qing-An Huang, 2024. "Inductor-capacitor passive wireless sensors using nonlinear parity-time symmetric configurations," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Liao, Qinghong & Song, Menglin & Bao, Weida, 2023. "Generation of second-order sideband and slow-fast light effects in a PT-symmetric optomechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53836-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.