IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32966-x.html
   My bibliography  Save this article

Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer

Author

Listed:
  • Jinhong Park

    (Inha University
    Inha University)

  • Duhwan Seong

    (Sungkyunkwan University
    Institute for Basic Science (IBS))

  • Yong Jun Park

    (Inha University)

  • Sang Hyeok Park

    (Inha University)

  • Hyunjin Jung

    (Sungkyunkwan University
    Institute for Basic Science (IBS))

  • Yewon Kim

    (Sungkyunkwan University
    Institute for Basic Science (IBS))

  • Hyoung Won Baac

    (Sungkyunkwan University)

  • Mikyung Shin

    (Institute for Basic Science (IBS)
    Sungkyunkwan University)

  • Seunghyun Lee

    (Kyunghee University)

  • Minbaek Lee

    (Inha University
    Inha University)

  • Donghee Son

    (Sungkyunkwan University
    Institute for Basic Science (IBS)
    Sungkyunkwan University)

Abstract

The reversibly stable formation and rupture processes of electrical percolative pathways in organic and inorganic insulating materials are essential prerequisites for operating non-volatile resistive memory devices. However, such resistive switching has not yet been reported for dynamically cross-linked polymers capable of intrinsic stretchability and self-healing. This is attributable to the uncontrollable interplay between the conducting filler and the polymer. Herein, we present the development of the self-healing, stretchable, and reconfigurable resistive random-access memory. The device was fabricated via the self-assembly of a silver-gradient nanocomposite bilayer which is capable of easily forming the metal-insulator-metal structure. To realize stable resistive switching in dynamic molecular networks, our device features the following properties: i) self-reconstruction of nanoscale conducting fillers in dynamic hydrogen bonding for self-healing and reconfiguration and ii) stronger interaction among the conducting fillers than with polymers for the formation of robust percolation paths. Based on these unique features, we successfully demonstrated stable data storage of cardiac signals, damage-reliable memory triggering system using a triboelectric energy-harvesting device, and touch sensing via pressure-induced resistive switching.

Suggested Citation

  • Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32966-x
    DOI: 10.1038/s41467-022-32966-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32966-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32966-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    2. Ward A. Lopes & Heinrich M. Jaeger, 2001. "Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds," Nature, Nature, vol. 414(6865), pages 735-738, December.
    3. Aaron D. Mickle & Sang Min Won & Kyung Nim Noh & Jangyeol Yoon & Kathleen W. Meacham & Yeguang Xue & Lisa A. McIlvried & Bryan A. Copits & Vijay K. Samineni & Kaitlyn E. Crawford & Do Hoon Kim & Paulo, 2019. "A wireless closed-loop system for optogenetic peripheral neuromodulation," Nature, Nature, vol. 565(7739), pages 361-365, January.
    4. Daewoo Suh & K. P. Faseela & Wonjoon Kim & Chanyong Park & Jang Gyun Lim & Sungwon Seo & Moon Ki Kim & Hyungpil Moon & Seunghyun Baik, 2020. "Electron tunneling of hierarchically structured silver nanosatellite particles for highly conductive healable nanocomposites," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Chengyu Li & Di Liu & Chaoqun Xu & Ziming Wang & Sheng Shu & Zhuoran Sun & Wei Tang & Zhong Lin Wang, 2021. "Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Thanh Phuong Vo & Tae Uk Nam & Min Woo Jeong & Jun Su Kim & Kyu Ho Jung & Yeongjun Lee & Guorong Ma & Xiaodan Gu & Jeffrey B.-H. Tok & Tae Il Lee & Zhenan Bao & Jin Young Oh, 2024. "Autonomous self-healing supramolecular polymer transistors for skin electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Tong Li & Zhidong Wei & Fei Jin & Yongjiu Yuan & Weiying Zheng & Lili Qian & Hongbo Wang & Lisha Hua & Juan Ma & Huanhuan Zhang & Huaduo Gu & Michael G. Irwin & Ting Wang & Steven Wang & Zuankai Wang , 2023. "Soft ferroelectret ultrasound receiver for targeted peripheral neuromodulation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Hengtian Zhu & Huan Yang & Siqi Xu & Yuanyuan Ma & Shugeng Zhu & Zhengyi Mao & Weiwei Chen & Zizhong Hu & Rongrong Pan & Yurui Xu & Yifeng Xiong & Ye Chen & Yanqing Lu & Xinghai Ning & Dechen Jiang & , 2024. "Frequency-encoded eye tracking smart contact lens for human–machine interaction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Alp Timucin Toymus & Umut Can Yener & Emine Bardakci & Özgür Deniz Temel & Ersin Koseoglu & Dincay Akcoren & Burak Eminoglu & Mohsin Ali & Rasim Kilic & Tufan Tarcan & Levent Beker, 2024. "An integrated and flexible ultrasonic device for continuous bladder volume monitoring," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Woo Seok Kim & M. Ibrahim Khot & Hyun-Myung Woo & Sungcheol Hong & Dong-Hyun Baek & Thomas Maisey & Brandon Daniels & P. Louise Coletta & Byung-Jun Yoon & David G. Jayne & Sung Il Park, 2022. "AI-enabled, implantable, multichannel wireless telemetry for photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jian Li & Huiling Jia & Jingkun Zhou & Xingcan Huang & Long Xu & Shengxin Jia & Zhan Gao & Kuanming Yao & Dengfeng Li & Binbin Zhang & Yiming Liu & Ya Huang & Yue Hu & Guangyao Zhao & Zitong Xu & Jiyu, 2023. "Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Xu, Shuxing & Zhang, Jiabin & Su, Erming & Li, Chengyu & Tang, Wei & Liu, Guanlin & Cao, Leo N.Y. & Wang, Zhong Lin, 2024. "Dynamic behavior and energy flow of floating triboelectric nanogenerators," Applied Energy, Elsevier, vol. 367(C).
    12. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Cheng Yang & Qianni Wu & Junqing Liu & Jingshan Mo & Xiangling Li & Chengduan Yang & Ziqi Liu & Jingbo Yang & Lelun Jiang & Weirong Chen & Hui-jiuan Chen & Ji Wang & Xi Xie, 2022. "Intelligent wireless theranostic contact lens for electrical sensing and regulation of intraocular pressure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Kewang Nan & Kiwan Wong & Dengfeng Li & Binbin Ying & James C. McRae & Vivian R. Feig & Shubing Wang & Ningjie Du & Yuelong Liang & Qijiang Mao & Enjie Zhou & Yonglin Chen & Lei Sang & Kuanming Yao & , 2024. "An ingestible, battery-free, tissue-adhering robotic interface for non-invasive and chronic electrostimulation of the gut," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Jinyuan Zhang & Kyunghun Kim & Ho Joong Kim & Dawn Meyer & Woohyun Park & Seul Ah Lee & Yumin Dai & Bongjoong Kim & Haesoo Moon & Jay V. Shah & Keely E. Harris & Brett Collar & Kangying Liu & Pedro Ir, 2022. "Smart soft contact lenses for continuous 24-hour monitoring of intraocular pressure in glaucoma care," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Yiming Liu & Chun Ki Yiu & Zhao Zhao & Wooyoung Park & Rui Shi & Xingcan Huang & Yuyang Zeng & Kuan Wang & Tsz Hung Wong & Shengxin Jia & Jingkun Zhou & Zhan Gao & Ling Zhao & Kuanming Yao & Jian Li &, 2023. "Soft, miniaturized, wireless olfactory interface for virtual reality," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Pengcheng Sun & Chaochao Li & Can Yang & Mengchun Sun & Hanqing Hou & Yanjun Guan & Jinger Chen & Shangbin Liu & Kuntao Chen & Yuan Ma & Yunxiang Huang & Xiangling Li & Huachun Wang & Liu Wang & Sheng, 2024. "A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32966-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.