IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29785-5.html
   My bibliography  Save this article

Bound states at partial dislocation defects in multipole higher-order topological insulators

Author

Listed:
  • Sasha S. Yamada

    (University of Illinois at Urbana-Champaign)

  • Tianhe Li

    (University of Illinois at Urbana-Champaign)

  • Mao Lin

    (University of Illinois at Urbana-Champaign)

  • Christopher W. Peterson

    (University of Illinois at Urbana-Champaign)

  • Taylor L. Hughes

    (University of Illinois at Urbana-Champaign)

  • Gaurav Bahl

    (University of Illinois at Urbana-Champaign)

Abstract

The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states in the insulating gap is not always necessary since they can be hidden in the bulk energy bands, obscured by boundary artifacts of non-topological origin, or, in the case of higher-order topology, they can be gapped altogether. Recently, exotic defects of translation symmetry called partial dislocations have been proposed to trap gapless topological modes in some materials. Here we present experimental observations of partial-dislocation-induced topological modes in 2D and 3D insulators. We particularly focus on multipole higher-order topological insulators built from circuit-based resonator arrays, since crucially they are not sensitive to full dislocation defects, and they have a sublattice structure allowing for stacking faults and partial dislocations.

Suggested Citation

  • Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29785-5
    DOI: 10.1038/s41467-022-29785-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29785-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29785-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fei-Fei Li & Hai-Xiao Wang & Zhan Xiong & Qun Lou & Ping Chen & Rui-Xin Wu & Yin Poo & Jian-Hua Jiang & Sajeev John, 2018. "Topological light-trapping on a dislocation," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Haoran Xue & Yong Ge & Hong-Xiang Sun & Qiang Wang & Ding Jia & Yi-Jun Guan & Shou-Qi Yuan & Yidong Chong & Baile Zhang, 2020. "Observation of an acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Joel E. Moore, 2010. "The birth of topological insulators," Nature, Nature, vol. 464(7286), pages 194-198, March.
    4. Christopher W. Peterson & Wladimir A. Benalcazar & Taylor L. Hughes & Gaurav Bahl, 2018. "A quantized microwave quadrupole insulator with topologically protected corner states," Nature, Nature, vol. 555(7696), pages 346-350, March.
    5. Yang Liu & Shuwai Leung & Fei-Fei Li & Zhi-Kang Lin & Xiufeng Tao & Yin Poo & Jian-Hua Jiang, 2021. "Bulk–disclination correspondence in topological crystalline insulators," Nature, Nature, vol. 589(7842), pages 381-385, January.
    6. Xiang Ni & Mengyao Li & Matthew Weiner & Andrea Alù & Alexander B. Khanikaev, 2020. "Demonstration of a quantized acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    7. Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
    8. Christopher W. Peterson & Tianhe Li & Wentao Jiang & Taylor L. Hughes & Gaurav Bahl, 2021. "Trapped fractional charges at bulk defects in topological insulators," Nature, Nature, vol. 589(7842), pages 376-380, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Danwei Liao & Jingyi Zhang & Shuochen Wang & Zhiwang Zhang & Alberto Cortijo & María A. H. Vozmediano & Francisco Guinea & Ying Cheng & Xiaojun Liu & Johan Christensen, 2024. "Visualizing the topological pentagon states of a giant C540 metamaterial," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Lizhen Lu & Kun Ding & Emanuele Galiffi & Xikui Ma & Tianyu Dong & J. B. Pendry, 2021. "Revealing topology with transformation optics," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    11. Weiwei Zhu & Haoran Xue & Jiangbin Gong & Yidong Chong & Baile Zhang, 2022. "Time-periodic corner states from Floquet higher-order topology," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    12. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Eva Arianna Aurelia Pogna & Leonardo Viti & Antonio Politano & Massimo Brambilla & Gaetano Scamarcio & Miriam Serena Vitiello, 2021. "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jacopo M. Ponti & Xuanyi Zhao & Luca Iorio & Tommaso Maggioli & Marco Colangelo & Benyamin Davaji & Raffaele Ardito & Richard V. Craster & Cristian Cassella, 2024. "Localized topological states beyond Fano resonances via counter-propagating wave mode conversion in piezoelectric microelectromechanical devices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Junhong Liu & Yunfei Xu & Rusong Li & Yongqiang Sun & Kaiyao Xin & Jinchuan Zhang & Quanyong Lu & Ning Zhuo & Junqi Liu & Lijun Wang & Fengmin Cheng & Shuman Liu & Fengqi Liu & Shenqiang Zhai, 2024. "High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Chongbin Zheng & Evelyn Tang, 2024. "A topological mechanism for robust and efficient global oscillations in biological networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29785-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.