IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15705-y.html
   My bibliography  Save this article

Demonstration of a quantized acoustic octupole topological insulator

Author

Listed:
  • Xiang Ni

    (City College of the City University of New York
    Graduate Center of the City University of New York
    City University of New York)

  • Mengyao Li

    (City College of the City University of New York
    Graduate Center of the City University of New York)

  • Matthew Weiner

    (City College of the City University of New York
    Graduate Center of the City University of New York)

  • Andrea Alù

    (City College of the City University of New York
    Graduate Center of the City University of New York
    City University of New York)

  • Alexander B. Khanikaev

    (City College of the City University of New York
    Graduate Center of the City University of New York)

Abstract

Recently introduced quantized multipole topological insulators (QMTIs) reveal new types of gapped boundary states, which themselves represent lower-dimensional topological phases and host symmetry protected zero-dimensional corner states. Inspired by these predictions, tremendous efforts have been devoted to the experimental observation of quantized quadrupole topological phase. However, due to stringent requirements of anti-commuting reflection symmetries, it is challenging to achieve higher-order quantized multipole moments, such as octupole moments, in a three-dimensional structure. Here, we overcome this challenge, and experimentally realize the acoustic analogue of a quantized octupole topological insulator using negatively coupled resonators. We confirm by first-principle studies that our design possesses a quantized octupole topological phase, and experimentally demonstrate spectroscopic evidence of a hierarchy of boundary modes, observing 3rd order topological corner states. Furthermore, we reveal topological phase transitions from higher- to lower-order multipole moments. Our work offers a pathway to explore higher-order topological states in 3D classical platforms.

Suggested Citation

  • Xiang Ni & Mengyao Li & Matthew Weiner & Andrea Alù & Alexander B. Khanikaev, 2020. "Demonstration of a quantized acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15705-y
    DOI: 10.1038/s41467-020-15705-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15705-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15705-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15705-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.