IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924007409.html
   My bibliography  Save this article

Solitons in higher-order topological insulator created by unit cell twisting

Author

Listed:
  • Kartashov, Yaroslav V.

Abstract

We show that higher-order topological insulators can be created from usual square structure by twisting waveguides in each unit cell around the axis passing through the center of the unit cell, even without changing intracell distance between waveguides. When applied to usual square array, this approach produces two-dimensional generalization of Su-Schrieffer-Heeger (SSH) structure supporting topological corner modes with propagation constants belonging to two forbidden spectral gaps opening only for twist angles from certain interval. In contrast to usual SSH arrays, where higher-order topology is typically introduced by diagonal waveguide shifts and only one type of corner states exists, our SSH-like structure in topological phase supports two co-existing types of in-phase and out-of-phase corner modes appearing in two different topological gaps that open in the spectrum. Therefore, twisting of the unit cell qualitatively changes topological properties of the system, offering a new degree of freedom in creation of higher-order topological phases. In material with focusing cubic nonlinearity two coexisting types of topological corner solitons emerge from these modes, whose existence and stability properties are studied here. Despite different internal structure, both such modes can be simultaneously dynamically stable in the appreciable part of the topological gap.

Suggested Citation

  • Kartashov, Yaroslav V., 2024. "Solitons in higher-order topological insulator created by unit cell twisting," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007409
    DOI: 10.1016/j.chaos.2024.115188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.