IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7842d10.1038_s41586-020-03125-3.html
   My bibliography  Save this article

Bulk–disclination correspondence in topological crystalline insulators

Author

Listed:
  • Yang Liu

    (Soochow University)

  • Shuwai Leung

    (Nanjing University)

  • Fei-Fei Li

    (Nanjing University)

  • Zhi-Kang Lin

    (Soochow University)

  • Xiufeng Tao

    (Nanjing University)

  • Yin Poo

    (Nanjing University)

  • Jian-Hua Jiang

    (Soochow University)

Abstract

Most natural and artificial materials have crystalline structures from which abundant topological phases emerge1–6. However, the bulk–edge correspondence—which has been widely used in experiments to determine the band topology from edge properties—is inadequate in discerning various topological crystalline phases7–16, leading to challenges in the experimental classification of the large family of topological crystalline materials4–6. It has been theoretically predicted that disclinations—ubiquitous crystallographic defects—can provide an effective probe of crystalline topology beyond edges17–19, but this has not yet been confirmed in experiments. Here we report an experimental demonstration of bulk–disclination correspondence, which manifests as fractional spectral charge and robust bound states at the disclinations. The fractional disclination charge originates from the symmetry-protected bulk charge patterns—a fundamental property of many topological crystalline insulators (TCIs). Furthermore, the robust bound states at disclinations emerge as a secondary, but directly observable, property of TCIs. Using reconfigurable photonic crystals as photonic TCIs with higher-order topology, we observe these hallmark features via pump–probe and near-field detection measurements. It is shown that both the fractional charge and the localized states emerge at the disclination in the TCI phase but vanish in the trivial phase. This experimental demonstration of bulk–disclination correspondence reveals a fundamental phenomenon and a paradigm for exploring topological materials.

Suggested Citation

  • Yang Liu & Shuwai Leung & Fei-Fei Li & Zhi-Kang Lin & Xiufeng Tao & Yin Poo & Jian-Hua Jiang, 2021. "Bulk–disclination correspondence in topological crystalline insulators," Nature, Nature, vol. 589(7842), pages 381-385, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7842:d:10.1038_s41586-020-03125-3
    DOI: 10.1038/s41586-020-03125-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03125-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03125-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Lizhen Lu & Kun Ding & Emanuele Galiffi & Xikui Ma & Tianyu Dong & J. B. Pendry, 2021. "Revealing topology with transformation optics," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Biye Xie & Renwen Huang & Shiyin Jia & Zemeng Lin & Junzheng Hu & Yao Jiang & Shaojie Ma & Peng Zhan & Minghui Lu & Zhenlin Wang & Yanfeng Chen & Shuang Zhang, 2023. "Bulk-local-density-of-state correspondence in topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7842:d:10.1038_s41586-020-03125-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.