IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34072-4.html
   My bibliography  Save this article

Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials

Author

Listed:
  • Matthew Weiner

    (City College of the City University of New York
    Graduate Center of the City University of New York
    City College of New York
    Nokia Bell Labs)

  • Xiang Ni

    (City College of the City University of New York
    Graduate Center of the City University of New York
    City University of New York)

  • Andrea Alù

    (City College of the City University of New York
    Graduate Center of the City University of New York
    City University of New York)

  • Alexander B. Khanikaev

    (City College of the City University of New York
    Graduate Center of the City University of New York
    City College of New York)

Abstract

While vector fields naturally offer additional degrees of freedom for emulating spin, acoustic pressure field is scalar in nature, and it requires engineering of synthetic degrees of freedom by material design. Here we experimentally demonstrate the control of sound waves by using two types of engineered acoustic systems, where synthetic pseudo-spin emerges either as a consequence of the evanescent nature of the field or due to lattice symmetry. First, we show that evanescent sound waves in perforated films possess transverse angular momentum locked to their propagation direction which enables their directional excitation. Second, we demonstrate that lattice symmetries of an acoustic kagome lattice also enable a synthetic transverse pseudo-spin locked to the linear momentum, enabling control of the propagation of modes both in the bulk and along the edges. Our results open a new degree of control of radiation and propagation of acoustic waves thus offering new design approaches for acoustic devices.

Suggested Citation

  • Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34072-4
    DOI: 10.1038/s41467-022-34072-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34072-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34072-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qian Lin & Meng Xiao & Luqi Yuan & Shanhui Fan, 2016. "Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    2. Xiujuan Zhang & Bi-Ye Xie & Hong-Fei Wang & Xiangyuan Xu & Yuan Tian & Jian-Hua Jiang & Ming-Hui Lu & Yan-Feng Chen, 2019. "Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Yang Long & Danmei Zhang & Chenwen Yang & Jianmin Ge & Hong Chen & Jie Ren, 2020. "Realization of acoustic spin transport in metasurface waveguides," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    4. Haoran Xue & Yong Ge & Hong-Xiang Sun & Qiang Wang & Ding Jia & Yi-Jun Guan & Shou-Qi Yuan & Yidong Chong & Baile Zhang, 2020. "Observation of an acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Polina V. Kapitanova & Pavel Ginzburg & Francisco J. Rodríguez-Fortuño & Dmitry S. Filonov & Pavel M. Voroshilov & Pavel A. Belov & Alexander N. Poddubny & Yuri S. Kivshar & Gregory A. Wurtz & Anatoly, 2014. "Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    6. Christopher W. Peterson & Wladimir A. Benalcazar & Taylor L. Hughes & Gaurav Bahl, 2018. "A quantized microwave quadrupole insulator with topologically protected corner states," Nature, Nature, vol. 555(7696), pages 346-350, March.
    7. Konstantin Y. Bliokh & Daniel Leykam & Max Lein & Franco Nori, 2019. "Topological non-Hermitian origin of surface Maxwell waves," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    8. Alexander B. Khanikaev & Romain Fleury & S. Hossein Mousavi & Andrea Alù, 2015. "Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    9. D. Hsieh & Y. Xia & D. Qian & L. Wray & J. H. Dil & F. Meier & J. Osterwalder & L. Patthey & J. G. Checkelsky & N. P. Ong & A. V. Fedorov & H. Lin & A. Bansil & D. Grauer & Y. S. Hor & R. J. Cava & M., 2009. "A tunable topological insulator in the spin helical Dirac transport regime," Nature, Nature, vol. 460(7259), pages 1101-1105, August.
    10. Xiang Ni & Mengyao Li & Matthew Weiner & Andrea Alù & Alexander B. Khanikaev, 2020. "Demonstration of a quantized acoustic octupole topological insulator," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    11. Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
    12. Hailong He & Chunyin Qiu & Liping Ye & Xiangxi Cai & Xiying Fan & Manzhu Ke & Fan Zhang & Zhengyou Liu, 2018. "Topological negative refraction of surface acoustic waves in a Weyl phononic crystal," Nature, Nature, vol. 560(7716), pages 61-64, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyang Gao & Xiaolin Zhang & Yi Wu & Minh-Son Pham & Yang Lu & Cunjuan Xia & Haowei Wang & Hongze Wang, 2024. "Damage-programmable design of metamaterials achieving crack-resisting mechanisms seen in nature," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Shubo Wang & Guanqing Zhang & Xulong Wang & Qing Tong & Jensen Li & Guancong Ma, 2021. "Spin-orbit interactions of transverse sound," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Weiwei Zhu & Haoran Xue & Jiangbin Gong & Yidong Chong & Baile Zhang, 2022. "Time-periodic corner states from Floquet higher-order topology," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. A. Hashemi & K. Busch & D. N. Christodoulides & S. K. Ozdemir & R. El-Ganainy, 2022. "Linear response theory of open systems with exceptional points," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Qianlong Kang & Fujia Chen & Hongyong Mao & Keya Zhou & Kai Guo & Shutian Liu & Zhongyi Guo, 2023. "Dual-band valley-protected topological edge states in graphene-like phononic crystals with waveguide," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-7, March.
    16. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Jeseung Lee & Minwoo “Joshua” Kweun & Woorim Lee & Hong Min Seung & Yoon Young Kim, 2024. "Perfect circular polarization of elastic waves in solid media," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Xiao Li & Yineng Liu & Zhifang Lin & Jack Ng & C. T. Chan, 2021. "Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Xiaoxiao Wu & Haiyan Fan & Tuo Liu & Zhongming Gu & Ruo-Yang Zhang & Jie Zhu & Xiang Zhang, 2022. "Topological phononics arising from fluid-solid interactions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Yuwei Zhao & Yue Lu & Huiping Li & Yongbin Zhu & You Meng & Na Li & Donghong Wang & Feng Jiang & Funian Mo & Changbai Long & Ying Guo & Xinliang Li & Zhaodong Huang & Qing Li & Johnny C. Ho & Jun Fan , 2022. "Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34072-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.