IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48788-y.html
   My bibliography  Save this article

High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity

Author

Listed:
  • Junhong Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yunfei Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Rusong Li

    (Beijing Academy of Quantum Information Sciences)

  • Yongqiang Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Kaiyao Xin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jinchuan Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Quanyong Lu

    (Beijing Academy of Quantum Information Sciences)

  • Ning Zhuo

    (Chinese Academy of Sciences)

  • Junqi Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Lijun Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fengmin Cheng

    (Chinese Academy of Sciences)

  • Shuman Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fengqi Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shenqiang Zhai

    (Chinese Academy of Sciences)

Abstract

Topological lasers (TLs) have attracted widespread attention due to their mode robustness against perturbations or defects. Among them, electrically pumped TLs have gained extensive research interest due to their advantages of compact size and easy integration. Nevertheless, limited studies on electrically pumped TLs have been reported in the terahertz (THz) and telecom wavelength ranges with relatively low output powers, causing a wide gap between practical applications. Here, we introduce a surface metallic Dirac-vortex cavity (SMDC) design to solve the difficulty of increasing power for electrically pumped TLs in the THz spectral range. Due to the strong coupling between the SMDC and the active region, robust 2D topological defect lasing modes are obtained. More importantly, enough gain and large radiative efficiency provided by the SMDC bring in the increase of the output power to a maximum peak power of 150 mW which demonstrates the practical application potential of electrically pumped TLs.

Suggested Citation

  • Junhong Liu & Yunfei Xu & Rusong Li & Yongqiang Sun & Kaiyao Xin & Jinchuan Zhang & Quanyong Lu & Ning Zhuo & Junqi Liu & Lijun Wang & Fengmin Cheng & Shuman Liu & Fengqi Liu & Shenqiang Zhai, 2024. "High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48788-y
    DOI: 10.1038/s41467-024-48788-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48788-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48788-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongquan Zeng & Udvas Chattopadhyay & Bofeng Zhu & Bo Qiang & Jinghao Li & Yuhao Jin & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Baile Zhang & Yidong Chong & Qi Jie Wang, 2020. "Electrically pumped topological laser with valley edge modes," Nature, Nature, vol. 578(7794), pages 246-250, February.
    2. Jae-Hyuck Choi & William E. Hayenga & Yuzhou G. N. Liu & Midya Parto & Babak Bahari & Demetrios N. Christodoulides & Mercedeh Khajavikhan, 2021. "Room temperature electrically pumped topological insulator lasers," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Yihao Yang & Zhen Gao & Haoran Xue & Li Zhang & Mengjia He & Zhaoju Yang & Ranjan Singh & Yidong Chong & Baile Zhang & Hongsheng Chen, 2019. "Realization of a three-dimensional photonic topological insulator," Nature, Nature, vol. 565(7741), pages 622-626, January.
    4. Ha-Reem Kim & Min-Soo Hwang & Daria Smirnova & Kwang-Yong Jeong & Yuri Kivshar & Hong-Gyu Park, 2020. "Multipolar lasing modes from topological corner states," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Song Han & Yunda Chua & Yongquan Zeng & Bofeng Zhu & Chongwu Wang & Bo Qiang & Yuhao Jin & Qian Wang & Lianhe Li & Alexander Giles Davies & Edmund Harold Linfield & Yidong Chong & Baile Zhang & Qi Jie, 2023. "Photonic Majorana quantum cascade laser with polarization-winding emission," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Y. Chassagneux & R. Colombelli & W. Maineult & S. Barbieri & H. E. Beere & D. A. Ritchie & S. P. Khanna & E. H. Linfield & A. G. Davies, 2009. "Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions," Nature, Nature, vol. 457(7226), pages 174-178, January.
    7. Yuan Jin & Liang Gao & Ji Chen & Chongzhao Wu & John L. Reno & Sushil Kumar, 2018. "High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    8. Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
    9. Yuan Jin & Liang Gao & Ji Chen & Chongzhao Wu & John L. Reno & Sushil Kumar, 2018. "Publisher Correction: High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings," Nature Communications, Nature, vol. 9(1), pages 1-2, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Tang, Qian & Zhang, Yiqi & Kartashov, Yaroslav V. & Li, Yongdong & Konotop, Vladimir V., 2022. "Vector valley Hall edge solitons in superhoneycomb lattices," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Jingyi Tian & Qi Ying Tan & Yutao Wang & Yihao Yang & Guanghui Yuan & Giorgio Adamo & Cesare Soci, 2023. "Perovskite quantum dot one-dimensional topological laser," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Mudi Wang & Qiyun Ma & Shan Liu & Ruo-Yang Zhang & Lei Zhang & Manzhu Ke & Zhengyou Liu & C. T. Chan, 2022. "Observation of boundary induced chiral anomaly bulk states and their transport properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Deyuan Zou & Tian Chen & Wenjing He & Jiacheng Bao & Ching Hua Lee & Houjun Sun & Xiangdong Zhang, 2021. "Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Jiewei Chen & Yue Zhou & Jianmin Yan & Jidong Liu & Lin Xu & Jingli Wang & Tianqing Wan & Yuhui He & Wenjing Zhang & Yang Chai, 2022. "Room-temperature valley transistors for low-power neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Xiaoxiao Wu & Haiyan Fan & Tuo Liu & Zhongming Gu & Ruo-Yang Zhang & Jie Zhu & Xiang Zhang, 2022. "Topological phononics arising from fluid-solid interactions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Hengjiang Ren & Tirth Shah & Hannes Pfeifer & Christian Brendel & Vittorio Peano & Florian Marquardt & Oskar Painter, 2022. "Topological phonon transport in an optomechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48788-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.