Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-26414-5
Download full text from publisher
References listed on IDEAS
- Nikita A. Olekhno & Egor I. Kretov & Andrei A. Stepanenko & Polina A. Ivanova & Vitaly V. Yaroshenko & Ekaterina M. Puhtina & Dmitry S. Filonov & Barbara Cappello & Ladislau Matekovits & Maxim A. Gorl, 2020. "Topological edge states of interacting photon pairs emulated in a topolectrical circuit," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- Marc Serra-Garcia & Valerio Peri & Roman Süsstrunk & Osama R. Bilal & Tom Larsen & Luis Guillermo Villanueva & Sebastian D. Huber, 2018. "Observation of a phononic quadrupole topological insulator," Nature, Nature, vol. 555(7696), pages 342-345, March.
- Ching Hua Lee & Amanda Sutrisno & Tobias Hofmann & Tobias Helbig & Yuhan Liu & Yee Sin Ang & Lay Kee Ang & Xiao Zhang & Martin Greiter & Ronny Thomale, 2020. "Imaging nodal knots in momentum space through topolectrical circuits," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
- Lucas S. Palacios & Serguei Tchoumakov & Maria Guix & Ignacio Pagonabarraga & Samuel Sánchez & Adolfo G. Grushin, 2021. "Guided accumulation of active particles by topological design of a second-order skin effect," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Linhu Li & Sen Mu & Ching Hua Lee & Jiangbin Gong, 2021. "Quantized classical response from spectral winding topology," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Christopher W. Peterson & Wladimir A. Benalcazar & Taylor L. Hughes & Gaurav Bahl, 2018. "A quantized microwave quadrupole insulator with topologically protected corner states," Nature, Nature, vol. 555(7696), pages 346-350, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Quan Lin & Wei Yi & Peng Xue, 2023. "Manipulating directional flow in a two-dimensional photonic quantum walk under a synthetic magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Zhongming Gu & He Gao & Haoran Xue & Jensen Li & Zhongqing Su & Jie Zhu, 2022. "Transient non-Hermitian skin effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- Qiuyan Zhou & Jien Wu & Zhenhang Pu & Jiuyang Lu & Xueqin Huang & Weiyin Deng & Manzhu Ke & Zhengyou Liu, 2023. "Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Wang, Huanyu & Liu, Wuming, 2023. "Broken bulk-boundary correspondence in the non-Hermitian superconductive chain with the identity determinant of transfer matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
- Zhen Li & Li-Wei Wang & Xulong Wang & Zhi-Kang Lin & Guancong Ma & Jian-Hua Jiang, 2024. "Observation of dynamic non-Hermitian skin effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Federico Roccati & Miguel Bello & Zongping Gong & Masahito Ueda & Francesco Ciccarello & Aurélia Chenu & Angelo Carollo, 2024. "Hermitian and non-Hermitian topology from photon-mediated interactions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Quan Lin & Tianyu Li & Lei Xiao & Kunkun Wang & Wei Yi & Peng Xue, 2022. "Observation of non-Hermitian topological Anderson insulator in quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Xuewei Zhang & Chaohua Wu & Mou Yan & Ni Liu & Ziyu Wang & Gang Chen, 2024. "Observation of continuum Landau modes in non-Hermitian electric circuits," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Peng Xue & Quan Lin & Kunkun Wang & Lei Xiao & Stefano Longhi & Wei Yi, 2024. "Self acceleration from spectral geometry in dissipative quantum-walk dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Haoran Xue & Z. Y. Chen & Zheyu Cheng & J. X. Dai & Yang Long & Y. X. Zhao & Baile Zhang, 2023. "Stiefel-Whitney topological charges in a three-dimensional acoustic nodal-line crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Weiwei Zhu & Haoran Xue & Jiangbin Gong & Yidong Chong & Baile Zhang, 2022. "Time-periodic corner states from Floquet higher-order topology," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
- Sasha S. Yamada & Tianhe Li & Mao Lin & Christopher W. Peterson & Taylor L. Hughes & Gaurav Bahl, 2022. "Bound states at partial dislocation defects in multipole higher-order topological insulators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Tianyi Hu & Weiliang Zhong & Tingfeng Zhang & Weihua Wang & Z. F. Wang, 2023. "Identifying topological corner states in two-dimensional metal-organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Michael Vrugt & Tobias Frohoff-Hülsmann & Eyal Heifetz & Uwe Thiele & Raphael Wittkowski, 2023. "From a microscopic inertial active matter model to the Schrödinger equation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
- Wright, E.A.P. & Yoon, S. & Mendes, J.F.F. & Goltsev, A.V., 2021. "Topological phase transition in the periodically forced Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Ren, Boquan & Kartashov, Yaroslav V. & Wang, Hongguang & Li, Yongdong & Zhang, Yiqi, 2023. "Floquet topological insulators with hybrid edges," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Junhong Liu & Yunfei Xu & Rusong Li & Yongqiang Sun & Kaiyao Xin & Jinchuan Zhang & Quanyong Lu & Ning Zhuo & Junqi Liu & Lijun Wang & Fengmin Cheng & Shuman Liu & Fengqi Liu & Shenqiang Zhai, 2024. "High-power electrically pumped terahertz topological laser based on a surface metallic Dirac-vortex cavity," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Yuang Pan & Chaoxi Cui & Qiaolu Chen & Fujia Chen & Li Zhang & Yudong Ren & Ning Han & Wenhao Li & Xinrui Li & Zhi-Ming Yu & Hongsheng Chen & Yihao Yang, 2023. "Real higher-order Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Weixuan Zhang & Hao Yuan & Haiteng Wang & Fengxiao Di & Na Sun & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2022. "Observation of Bloch oscillations dominated by effective anyonic particle statistics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Wenting Cheng & Alexander Cerjan & Ssu-Ying Chen & Emil Prodan & Terry A. Loring & Camelia Prodan, 2023. "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Florian Allein & Adamantios Anastasiadis & Rajesh Chaunsali & Ian Frankel & Nicholas Boechler & Fotios K. Diakonos & Georgios Theocharis, 2023. "Strain topological metamaterials and revealing hidden topology in higher-order coordinates," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Weixuan Zhang & Hao Yuan & Na Sun & Houjun Sun & Xiangdong Zhang, 2022. "Observation of novel topological states in hyperbolic lattices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26414-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.