IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29423-0.html
   My bibliography  Save this article

Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR

Author

Listed:
  • Diego F. Gauto

    (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS)
    Univ. Paris-Saclay)

  • Pavel Macek

    (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS)
    Celonic AG)

  • Duccio Malinverni

    (St Jude Children’s Research Hospital)

  • Hugo Fraga

    (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS)
    Faculdade de Medicina da Universidade do Porto
    i3S, Instituto de Investigacao e Inovacao em Saude, Universidade do Porto)

  • Matteo Paloni

    (Univ Montpellier, CNRS, INSERM)

  • Iva Sučec

    (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS))

  • Audrey Hessel

    (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS))

  • Juan Pablo Bustamante

    (IBB (CONICET-UNER))

  • Alessandro Barducci

    (Univ Montpellier, CNRS, INSERM)

  • Paul Schanda

    (Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS)
    Institute of Science and Technology Austria)

Abstract

Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.

Suggested Citation

  • Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29423-0
    DOI: 10.1038/s41467-022-29423-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29423-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29423-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diego F. Gauto & Leandro F. Estrozi & Charles D. Schwieters & Gregory Effantin & Pavel Macek & Remy Sounier & Astrid C. Sivertsen & Elena Schmidt & Rime Kerfah & Guillaume Mas & Jacques-Philippe Colle, 2019. "Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Elan Z. Eisenmesser & Oscar Millet & Wladimir Labeikovsky & Dmitry M. Korzhnev & Magnus Wolf-Watz & Daryl A. Bosco & Jack J. Skalicky & Lewis E. Kay & Dorothee Kern, 2005. "Intrinsic dynamics of an enzyme underlies catalysis," Nature, Nature, vol. 438(7064), pages 117-121, November.
    3. Vilius Kurauskas & Sergei A. Izmailov & Olga N. Rogacheva & Audrey Hessel & Isabel Ayala & Joyce Woodhouse & Anastasya Shilova & Yi Xue & Tairan Yuwen & Nicolas Coquelle & Jacques-Philippe Colletier &, 2017. "Slow conformational exchange and overall rocking motion in ubiquitin protein crystals," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    4. Remco Sprangers & Lewis E. Kay, 2007. "Quantitative dynamics and binding studies of the 20S proteasome by NMR," Nature, Nature, vol. 445(7128), pages 618-622, February.
    5. Katherine A. Henzler-Wildman & Ming Lei & Vu Thai & S. Jordan Kerns & Martin Karplus & Dorothee Kern, 2007. "A hierarchy of timescales in protein dynamics is linked to enzyme catalysis," Nature, Nature, vol. 450(7171), pages 913-916, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriana Coricello & Alanya J. Nardone & Antonio Lupia & Carmen Gratteri & Matthijn Vos & Vincent Chaptal & Stefano Alcaro & Wen Zhu & Yuichiro Takagi & Nigel G. J. Richards, 2024. "3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Sean L Seyler & Avishek Kumar & M F Thorpe & Oliver Beckstein, 2015. "Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-37, October.
    3. Michael A Jamros & Leandro C Oliveira & Paul C Whitford & José N Onuchic & Joseph A Adams & Patricia A Jennings, 2012. "Substrate-Specific Reorganization of the Conformational Ensemble of CSK Implicates Novel Modes of Kinase Function," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-8, September.
    4. Xiaozhan Qu & Simin Wang & Shuo Zhao & Chanjuan Wan & Weiya Xu & Chengdong Huang, 2024. "The dynamic triage interplay of Hsp90 with its chaperone cycle and client binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yuki Toyama & Ichio Shimada, 2024. "NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Rachel J. Roth Flach & Eliza Bollinger & Allan R. Reyes & Brigitte Laforest & Bethany L. Kormos & Shenping Liu & Matthew R. Reese & Luis A. Martinez Alsina & Leanne Buzon & Yuan Zhang & Bruce Bechle &, 2023. "Small molecule branched-chain ketoacid dehydrogenase kinase (BDK) inhibitors with opposing effects on BDK protein levels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    8. Chunting Zhang & Changmiao Guo & Ryan W. Russell & Caitlin M. Quinn & Mingyue Li & John C. Williams & Angela M. Gronenborn & Tatyana Polenova, 2022. "Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Santiago Esteban-Martín & Robert Bryn Fenwick & Jörgen Ådén & Benjamin Cossins & Carlos W Bertoncini & Victor Guallar & Magnus Wolf-Watz & Xavier Salvatella, 2014. "Correlated Inter-Domain Motions in Adenylate Kinase," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-7, July.
    10. Kenkre, V.M. & Spendier, K., 2022. "A theory of coalescence of signaling receptor clusters in immune cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    11. Gregory D Friedland & Nils-Alexander Lakomek & Christian Griesinger & Jens Meiler & Tanja Kortemme, 2009. "A Correspondence Between Solution-State Dynamics of an Individual Protein and the Sequence and Conformational Diversity of its Family," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-16, May.
    12. Fanindra Kumar Deshmukh & Gili Ben-Nissan & Maya A. Olshina & Maria G. Füzesi-Levi & Caley Polkinghorn & Galina Arkind & Yegor Leushkin & Irit Fainer & Sarel J. Fleishman & Dan Tawfik & Michal Sharon, 2023. "Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    13. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Maciej Majewski & Adrià Pérez & Philipp Thölke & Stefan Doerr & Nicholas E. Charron & Toni Giorgino & Brooke E. Husic & Cecilia Clementi & Frank Noé & Gianni Fabritiis, 2023. "Machine learning coarse-grained potentials of protein thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Torgeir R Hvidsten & Astrid Lægreid & Andriy Kryshtafovych & Gunnar Andersson & Krzysztof Fidelis & Jan Komorowski, 2009. "A Comprehensive Analysis of the Structure-Function Relationship in Proteins Based on Local Structure Similarity," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-9, July.
    16. Sara Pfister & Julius Rabl & Thomas Wiegand & Simone Mattei & Alexander A. Malär & Lauriane Lecoq & Stefan Seitz & Ralf Bartenschlager & Anja Böckmann & Michael Nassal & Daniel Boehringer & Beat H. Me, 2023. "Structural conservation of HBV-like capsid proteins over hundreds of millions of years despite the shift from non-enveloped to enveloped life-style," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Dong Long & Rafael Brüschweiler, 2011. "In Silico Elucidation of the Recognition Dynamics of Ubiquitin," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-9, April.
    18. Jin Liu & Ruth Nussinov, 2009. "The Mechanism of Ubiquitination in the Cullin-RING E3 Ligase Machinery: Conformational Control of Substrate Orientation," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-10, October.
    19. Wojciech Potrzebowski & Jill Trewhella & Ingemar Andre, 2018. "Bayesian inference of protein conformational ensembles from limited structural data," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-27, December.
    20. Gogulan Karunanithy & Vaibhav Kumar Shukla & D. Flemming Hansen, 2024. "Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29423-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.