IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47659-w.html
   My bibliography  Save this article

NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity

Author

Listed:
  • Yuki Toyama

    (RIKEN Center for Biosystems Dynamics Research (BDR))

  • Ichio Shimada

    (RIKEN Center for Biosystems Dynamics Research (BDR)
    Hiroshima University)

Abstract

The DEAD-box RNA helicase (DDX) plays a central role in many aspects of RNA metabolism by remodeling the defined structure of RNA molecules. While a number of structural studies have revealed the atomistic details of the interaction between DDX and RNA ligands, the molecular mechanism of how this molecule unwinds a structured RNA into an unstructured single-stranded RNA (ssRNA) has largely remained elusive. This is due to challenges in structurally characterizing the unwinding intermediate state and the lack of thermodynamic details underlying this process. In this study, we use solution nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction of human DDX3X, a member of the DDX family, with various RNA ligands. Our results show that the inherent binding affinity of DDX3X for ssRNA is significantly higher than that for structured RNA elements. This preferential binding, accompanied by the formation of a domain-closed conformation in complex with ssRNA, effectively stabilizes the denatured ssRNA state and thus underlies the unwinding activity of DDX3X. Our results provide a thermodynamic and structural basis for the DDX function, whereby DDX can recognize and remodel a distinct set of structured RNAs to participate in a wide range of physiological processes.

Suggested Citation

  • Yuki Toyama & Ichio Shimada, 2024. "NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47659-w
    DOI: 10.1038/s41467-024-47659-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47659-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47659-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Remco Sprangers & Lewis E. Kay, 2007. "Quantitative dynamics and binding studies of the 20S proteasome by NMR," Nature, Nature, vol. 445(7128), pages 618-622, February.
    2. Parimal Samir & Sannula Kesavardhana & Deanna M. Patmore & Sebastien Gingras & R. K. Subbarao Malireddi & Rajendra Karki & Clifford S. Guy & Benoit Briard & David E. Place & Anannya Bhattacharya & Bhe, 2019. "DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome," Nature, Nature, vol. 573(7775), pages 590-594, September.
    3. Giles Robinson & Matthew Parker & Tanya A. Kranenburg & Charles Lu & Xiang Chen & Li Ding & Timothy N. Phoenix & Erin Hedlund & Lei Wei & Xiaoyan Zhu & Nader Chalhoub & Suzanne J. Baker & Robert Hueth, 2012. "Novel mutations target distinct subgroups of medulloblastoma," Nature, Nature, vol. 488(7409), pages 43-48, August.
    4. He Song & Xinhua Ji, 2019. "The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Trevor J. Pugh & Shyamal Dilhan Weeraratne & Tenley C. Archer & Daniel A. Pomeranz Krummel & Daniel Auclair & James Bochicchio & Mauricio O. Carneiro & Scott L. Carter & Kristian Cibulskis & Rachel L., 2012. "Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations," Nature, Nature, vol. 488(7409), pages 106-110, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaili Luo & Dazhuan Xin & Yunfei Liao & Kalen Berry & Sean Ogurek & Feng Zhang & Liguo Zhang & Chuntao Zhao & Rohit Rao & Xinran Dong & Hao Li & Jianzhong Yu & Yifeng Lin & Guoying Huang & Lingli Xu &, 2023. "Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Michelle M. Kameda-Smith & Helen Zhu & En-Ching Luo & Yujin Suk & Agata Xella & Brian Yee & Chirayu Chokshi & Sansi Xing & Frederick Tan & Raymond G. Fox & Ashley A. Adile & David Bakhshinyan & Kevin , 2022. "Characterization of an RNA binding protein interactome reveals a context-specific post-transcriptional landscape of MYC-amplified medulloblastoma," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Elizabeth J. Radford & Hong-Kee Tan & Malin H. L. Andersson & James D. Stephenson & Eugene J. Gardner & Holly Ironfield & Andrew J. Waters & Daniel Gitterman & Sarah Lindsay & Federico Abascal & Iñigo, 2023. "Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Suijuan Zhong & Mengdi Wang & Luwei Huang & Youqiao Chen & Yuxin Ge & Jiyao Zhang & Yingchao Shi & Hao Dong & Xin Zhou & Bosong Wang & Tian Lu & Xiaoxi Jing & Yufeng Lu & Junjing Zhang & Xiaoqun Wang , 2023. "Single-cell epigenomics and spatiotemporal transcriptomics reveal human cerebellar development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Samuel Rivero-Hinojosa & Melanie Grant & Aswini Panigrahi & Huizhen Zhang & Veronika Caisova & Catherine M. Bollard & Brian R. Rood, 2021. "Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Jasmin Bartl & Marco Zanini & Flavia Bernardi & Antoine Forget & Lena Blümel & Julie Talbot & Daniel Picard & Nan Qin & Gabriele Cancila & Qingsong Gao & Soumav Nath & Idriss Mahoungou Koumba & Mariet, 2022. "The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Fanindra Kumar Deshmukh & Gili Ben-Nissan & Maya A. Olshina & Maria G. Füzesi-Levi & Caley Polkinghorn & Galina Arkind & Yegor Leushkin & Irit Fainer & Sarel J. Fleishman & Dan Tawfik & Michal Sharon, 2023. "Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    8. Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47659-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.