The Mechanism of Ubiquitination in the Cullin-RING E3 Ligase Machinery: Conformational Control of Substrate Orientation
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1000527
Download full text from publisher
References listed on IDEAS
- Katherine A. Henzler-Wildman & Ming Lei & Vu Thai & S. Jordan Kerns & Martin Karplus & Dorothee Kern, 2007. "A hierarchy of timescales in protein dynamics is linked to enzyme catalysis," Nature, Nature, vol. 450(7171), pages 913-916, December.
- Xu Tan & Luz Irina A. Calderon-Villalobos & Michal Sharon & Changxue Zheng & Carol V. Robinson & Mark Estelle & Ning Zheng, 2007. "Mechanism of auxin perception by the TIR1 ubiquitin ligase," Nature, Nature, vol. 446(7136), pages 640-645, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qing Sang & Lusheng Fan & Tianxiang Liu & Yongjian Qiu & Juan Du & Beixin Mo & Meng Chen & Xuemei Chen, 2023. "MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Sean L Seyler & Avishek Kumar & M F Thorpe & Oliver Beckstein, 2015. "Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-37, October.
- Michael A Jamros & Leandro C Oliveira & Paul C Whitford & José N Onuchic & Joseph A Adams & Patricia A Jennings, 2012. "Substrate-Specific Reorganization of the Conformational Ensemble of CSK Implicates Novel Modes of Kinase Function," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-8, September.
- Rachel J. Roth Flach & Eliza Bollinger & Allan R. Reyes & Brigitte Laforest & Bethany L. Kormos & Shenping Liu & Matthew R. Reese & Luis A. Martinez Alsina & Leanne Buzon & Yuan Zhang & Bruce Bechle &, 2023. "Small molecule branched-chain ketoacid dehydrogenase kinase (BDK) inhibitors with opposing effects on BDK protein levels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Lingmin Yuan & Fei Gao & Zongyang Lv & Digant Nayak & Anindita Nayak & Priscila dos Santos Bury & Kristin E. Cano & Lijia Jia & Natalia Oleinik & Firdevs Cansu Atilgan & Besim Ogretmen & Katelyn M. Wi, 2022. "Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Olena S. Tokareva & Kunhua Li & Tara L. Travaline & Ty M. Thomson & Jean-Marie Swiecicki & Mahmoud Moussa & Jessica D. Ramirez & Sean Litchman & Gregory L. Verdine & John H. McGee, 2023. "Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Kenkre, V.M. & Spendier, K., 2022. "A theory of coalescence of signaling receptor clusters in immune cells," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
- Adriana Coricello & Alanya J. Nardone & Antonio Lupia & Carmen Gratteri & Matthijn Vos & Vincent Chaptal & Stefano Alcaro & Wen Zhu & Yuichiro Takagi & Nigel G. J. Richards, 2024. "3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Ryan P. Wurz & Huan Rui & Ken Dellamaggiore & Sudipa Ghimire-Rijal & Kaylee Choi & Kate Smither & Albert Amegadzie & Ning Chen & Xiaofen Li & Abhisek Banerjee & Qing Chen & Dane Mohl & Amit Vaish, 2023. "Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Wojciech Potrzebowski & Jill Trewhella & Ingemar Andre, 2018. "Bayesian inference of protein conformational ensembles from limited structural data," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-27, December.
- James O Wrabl & Vincent J Hilser, 2010. "Investigating Homology between Proteins using Energetic Profiles," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.