Magic-angle-spinning NMR structure of the kinesin-1 motor domain assembled with microtubules reveals the elusive neck linker orientation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-34026-w
Download full text from publisher
References listed on IDEAS
- Diego F. Gauto & Leandro F. Estrozi & Charles D. Schwieters & Gregory Effantin & Pavel Macek & Remy Sounier & Astrid C. Sivertsen & Elena Schmidt & Rime Kerfah & Guillaume Mas & Jacques-Philippe Colle, 2019. "Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
- Sarah Rice & Abel W. Lin & Daniel Safer & Cynthia L. Hart & Nariman Naber & Bridget O. Carragher & Shane M. Cain & Elena Pechatnikova & Elizabeth M. Wilson-Kubalek & Michael Whittaker & Edward Pate & , 1999. "A structural change in the kinesin motor protein that drives motility," Nature, Nature, vol. 402(6763), pages 778-784, December.
- Matthieu P.M.H. Benoit & Ana B. Asenjo & Hernando Sosa, 2018. "Cryo-EM reveals the structural basis of microtubule depolymerization by kinesin-13s," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
- Wenjuan Wang & Jinqi Ren & Weiye Song & Yong Zhang & Wei Feng, 2022. "The architecture of kinesin-3 KLP-6 reveals a multilevel-lockdown mechanism for autoinhibition," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Luyan Cao & Weiyi Wang & Qiyang Jiang & Chunguang Wang & Marcel Knossow & Benoît Gigant, 2014. "The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
- Joe Howard & Anthony A. Hyman, 2003. "Dynamics and mechanics of the microtubule plus end," Nature, Nature, vol. 422(6933), pages 753-758, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Agnes Adler & Mamata Bangera & J. Wouter Beugelink & Salima Bahri & Hugo Ingen & Carolyn A. Moores & Marc Baldus, 2024. "A structural and dynamic visualization of the interaction between MAP7 and microtubules," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Changmiao Guo & Raymundo Alfaro-Aco & Chunting Zhang & Ryan W. Russell & Sabine Petry & Tatyana Polenova, 2023. "Structural basis of protein condensation on microtubules underlying branching microtubule nucleation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthieu P. M. H. Benoit & Lu Rao & Ana B. Asenjo & Arne Gennerich & Hernando Sosa, 2024. "Cryo-EM unveils kinesin KIF1A’s processivity mechanism and the impact of its pathogenic variant P305L," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Tianyang Liu & Fiona Shilliday & Alexander D. Cook & Mohammad Zeeshan & Declan Brady & Rita Tewari & Colin J. Sutherland & Anthony J. Roberts & Carolyn A. Moores, 2022. "Mechanochemical tuning of a kinesin motor essential for malaria parasite transmission," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
- Byron Hunter & Matthieu P. M. H. Benoit & Ana B. Asenjo & Caitlin Doubleday & Daria Trofimova & Corey Frazer & Irsa Shoukat & Hernando Sosa & John S. Allingham, 2022. "Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Doan Tuong-Van Le & Thomas Eckert & Günther Woehlke, 2013. "Computer Simulation of Assembly and Co-operativity of Hexameric AAA ATPases," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-19, July.
- Takema Sasaki & Kei Saito & Daisuke Inoue & Henrik Serk & Yuki Sugiyama & Edouard Pesquet & Yuta Shimamoto & Yoshihisa Oda, 2023. "Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
- Mireia Andreu-Carbó & Cornelia Egoldt & Marie-Claire Velluz & Charlotte Aumeier, 2024. "Microtubule damage shapes the acetylation gradient," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Xiangyu Fan & Richard J. McKenney, 2023. "Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Ju Zhou & Anhui Wang & Yinlong Song & Nan Liu & Jia Wang & Yan Li & Xin Liang & Guohui Li & Huiying Chu & Hong-Wei Wang, 2023. "Structural insights into the mechanism of GTP initiation of microtubule assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
- Yutaka Takeda & Takumi Chinen & Shunnosuke Honda & Sho Takatori & Shotaro Okuda & Shohei Yamamoto & Masamitsu Fukuyama & Koh Takeuchi & Taisuke Tomita & Shoji Hata & Daiju Kitagawa, 2024. "Molecular basis promoting centriole triplet microtubule assembly," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Charles Bayly-Jones & Christopher J. Lupton & Claudia Fritz & Hariprasad Venugopal & Daniel Ramsbeck & Michael Wermann & Christian Jäger & Alex Marco & Stephan Schilling & Dagmar Schlenzig & James C. , 2022. "Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Raptis, Theophanes E., 2017. "“Viral” Turing Machines, computation from noise and combinatorial hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 734-740.
- Guido Scarabelli & Barry J Grant, 2013. "Mapping the Structural and Dynamical Features of Kinesin Motor Domains," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-13, November.
- Sara Pfister & Julius Rabl & Thomas Wiegand & Simone Mattei & Alexander A. Malär & Lauriane Lecoq & Stefan Seitz & Ralf Bartenschlager & Anja Böckmann & Michael Nassal & Daniel Boehringer & Beat H. Me, 2023. "Structural conservation of HBV-like capsid proteins over hundreds of millions of years despite the shift from non-enveloped to enveloped life-style," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34026-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.