IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55026-y.html
   My bibliography  Save this article

The dynamic triage interplay of Hsp90 with its chaperone cycle and client binding

Author

Listed:
  • Xiaozhan Qu

    (University of Science and Technology of China
    Zhengzhou Tobacco Research Institute of CNTC)

  • Simin Wang

    (University of Science and Technology of China)

  • Shuo Zhao

    (University of Science and Technology of China)

  • Chanjuan Wan

    (University of Science and Technology of China)

  • Weiya Xu

    (University of Science and Technology of China)

  • Chengdong Huang

    (University of Science and Technology of China)

Abstract

Hsp90, a crucial molecular chaperone, regulates diverse client proteins, impacting both normal biology and disease. Central to its function is its conformational plasticity, driven by ATPase activity and client interactions. However, comprehensive insights into Hsp90’s dynamic molecular transitions remain elusive. Using solution NMR spectroscopy, we reveal how ATP binding, hydrolysis, and client engagement drive conformational and dynamic shifts in E. coli Hsp90, HtpG, through its chaperone cycle. Pronounced conformational fluctuations occur, especially in regions crucial for nucleotide binding and conformational transitions. ATP binding induces slow-exchanging conformations, representing discrete on-path transition states from open to closed forms, while ATP hydrolysis shifts HtpG into a compact conformation. Client binding acts as an allosteric switch, dynamically priming HtpG for elevated chaperone activity and, therefore, its efficient remodeling. Here, we provide atomic-level insights into Hsp90’s functional mechanism, highlighting the interplay of conformation, dynamics, nucleotide, and client interactions.

Suggested Citation

  • Xiaozhan Qu & Simin Wang & Shuo Zhao & Chanjuan Wan & Weiya Xu & Chengdong Huang, 2024. "The dynamic triage interplay of Hsp90 with its chaperone cycle and client binding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55026-y
    DOI: 10.1038/s41467-024-55026-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55026-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55026-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chari M. Noddings & Ray Yu-Ruei Wang & Jill L. Johnson & David A. Agard, 2022. "Structure of Hsp90–p23–GR reveals the Hsp90 client-remodelling mechanism," Nature, Nature, vol. 601(7893), pages 465-469, January.
    2. Remco Sprangers & Lewis E. Kay, 2007. "Quantitative dynamics and binding studies of the 20S proteasome by NMR," Nature, Nature, vol. 445(7128), pages 618-622, February.
    3. Ofrah Faust & Meital Abayev-Avraham & Anne S. Wentink & Michael Maurer & Nadinath B. Nillegoda & Nir London & Bernd Bukau & Rina Rosenzweig, 2020. "HSP40 proteins use class-specific regulation to drive HSP70 functional diversity," Nature, Nature, vol. 587(7834), pages 489-494, November.
    4. Faustine Henot & Elisa Rioual & Adrien Favier & Pavel Macek & Elodie Crublet & Pierre Josso & Bernhard Brutscher & Matthias Frech & Pierre Gans & Claire Loison & Jerome Boisbouvier, 2022. "Visualizing the transiently populated closed-state of human HSP90 ATP binding domain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Hannah Girstmair & Franziska Tippel & Abraham Lopez & Katarzyna Tych & Frank Stein & Per Haberkant & Philipp Werner Norbert Schmid & Dominic Helm & Matthias Rief & Michael Sattler & Johannes Buchner, 2019. "The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    6. Sophie L. Mader & Abraham Lopez & Jannis Lawatscheck & Qi Luo & Daniel A. Rutz & Ana P. Gamiz-Hernandez & Michael Sattler & Johannes Buchner & Ville R. I. Kaila, 2020. "Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Chengdong Huang & Paolo Rossi & Tomohide Saio & Charalampos G. Kalodimos, 2016. "Structural basis for the antifolding activity of a molecular chaperone," Nature, Nature, vol. 537(7619), pages 202-206, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Riedl & Ecenaz Bilgen & Ganesh Agam & Viivi Hirvonen & Alexander Jussupow & Franziska Tippl & Maximilian Riedl & Andreas Maier & Christian F. W. Becker & Ville R. I. Kaila & Don C. Lamb & Johan, 2024. "Evolution of the conformational dynamics of the molecular chaperone Hsp90," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Jaime Carrasco & Rosa Antón & Alejandro Valbuena & David Pantoja-Uceda & Mayur Mukhi & Rubén Hervás & Douglas V. Laurents & María Gasset & Javier Oroz, 2023. "Metamorphism in TDP-43 prion-like domain determines chaperone recognition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Hyunju Cho & Yumeng Liu & SangYoon Chung & Sowmya Chandrasekar & Shimon Weiss & Shu-ou Shan, 2024. "Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Chao Kong & Xiaozhan Qu & Mingming Liu & Weiya Xu & Da Chen & Yanshen Zhang & Shan Zhang & Feng Zhu & Zhenbang Liu & Jianchao Li & Chengdong Huang & Chao Wang, 2023. "Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Diego F. Gauto & Pavel Macek & Duccio Malinverni & Hugo Fraga & Matteo Paloni & Iva Sučec & Audrey Hessel & Juan Pablo Bustamante & Alessandro Barducci & Paul Schanda, 2022. "Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Gogulan Karunanithy & Vaibhav Kumar Shukla & D. Flemming Hansen, 2024. "Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Jonathan Schubert & Andrea Schulze & Chrisostomos Prodromou & Hannes Neuweiler, 2021. "Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Yuki Toyama & Ichio Shimada, 2024. "NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Rebecca San Gil & Dana Pascovici & Juliana Venturato & Heledd Brown-Wright & Prachi Mehta & Lidia Madrid San Martin & Jemma Wu & Wei Luan & Yi Kit Chui & Adekunle T. Bademosi & Shilpa Swaminathan & Se, 2024. "A transient protein folding response targets aggregation in the early phase of TDP-43-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    11. Faustine Henot & Elisa Rioual & Adrien Favier & Pavel Macek & Elodie Crublet & Pierre Josso & Bernhard Brutscher & Matthias Frech & Pierre Gans & Claire Loison & Jerome Boisbouvier, 2022. "Visualizing the transiently populated closed-state of human HSP90 ATP binding domain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Lorea Velasco-Carneros & Jorge Cuéllar & Leire Dublang & César Santiago & Jean-Didier Maréchal & Jaime Martín-Benito & Moisés Maestro & José Ángel Fernández-Higuero & Natalia Orozco & Fernando Moro & , 2023. "The self-association equilibrium of DNAJA2 regulates its interaction with unfolded substrate proteins and with Hsc70," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Fanindra Kumar Deshmukh & Gili Ben-Nissan & Maya A. Olshina & Maria G. Füzesi-Levi & Caley Polkinghorn & Galina Arkind & Yegor Leushkin & Irit Fainer & Sarel J. Fleishman & Dan Tawfik & Michal Sharon, 2023. "Allosteric regulation of the 20S proteasome by the Catalytic Core Regulators (CCRs) family," Nature Communications, Nature, vol. 14(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55026-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.